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Degenerate optomechanical parametric oscillators: Cooling in the vicinity of a critical point
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Degenerate optomechanical parametric oscillators are optical resonators in which a mechanical degree of
freedom is coupled to a cavity mode that is nonlinearly amplified via parametric down-conversion of an external
pumping laser. Below a critical pumping power the down-converted field is purely quantum mechanical, making
the theoretical description of such systems very challenging. Here we introduce a theoretical approach that is
capable of describing this regime, even at the critical point itself. We find that the down-converted field can induce
significant mechanical cooling and identify the process responsible of this as a cooling-by-heating mechanism.
Moreover, we show that, contrary to naive expectations and semiclassical predictions, cooling is not optimal at
the critical point, where the photon number is largest. Our approach opens the possibility of analyzing further
hybrid dissipative quantum systems in the vicinity of critical points.
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I. INTRODUCTION

Degenerate optical parametric oscillators (DOPOs) consist
of a driven optical cavity containing a crystal with second-
order optical nonlinearity [1–4]. Down-conversion in the
crystal can generate a field at half the frequency of the driving
laser and classical electrodynamics predicts that this field will
start oscillating inside the cavity only if the external laser
power exceeds some threshold value, where the nonlinear
gain can compensate for the cavity losses. A fully quantum-
mechanical theory, on the other hand, reveals that even below
threshold the down-converted field is not a vacuum, but a
squeezed field whose quantum correlations increase as the
threshold is approached.

Recent developments in the fabrication of crystalline
whispering-gallery-mode (cWGM) resonators [5–17] have
opened the way to study of the intracavity interplay between
down-conversion and optomechanics [18], a setup that we refer
to as the degenerate optomechanical parametric oscillator
(DOMPO). So far, it has been shown that the presence of
down-conversion in an optomechanical cavity can help to
enhance mechanical cooling [19], normal mode splitting [20],
and sensitivity in position measurements [21] or can even
bring optomechanics close to the strong-coupling regime
with additional bath engineering [22]. In all these works,
however, the nonlinear crystal is operated as a parametric
amplifier, providing a nonlinear gain to some external field
that is injected in the cavity at the down-converted frequency
(stimulated down-conversion). In contrast, the description of
the interaction between the field generated via spontaneous
down-conversion and the mechanical mode is much more
challenging, since (below threshold) the former is purely
quantum mechanical [23], so that the optomechanical coupling
cannot be linearized and does not admit a simple Gaussian
description.
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In this work we provide a theory for the DOMPO which
can be trusted all the way to threshold and is obtained
by combining traditional adiabatic elimination techniques
with our recently developed self-consistent Mori projector
(c-MoP) theory [24,25]. To this end we first introduce the
master equation which models the DOMPO and perform an
adiabatic elimination of the optical modes by neglecting the
mechanical backaction. The mechanical state is found to stay
approximately thermal for parameters compatible with current
cWGM resonators, with an effective temperature dependent
on the steady-state value and two-time correlation function
of the down-converted photon number, which we derive in
two ways. First, we treat the pump mode as a classical
field (semiclassical approach), allowing us to obtain simple
analytical expressions and provide a physical explanation for
the regions of significant cooling, showing that the system
provides a realistic implementation of the cooling-by-heating
mechanism [26] below threshold. Second, we use c-MoP
theory on the optical dynamics to find reliable results at
threshold and justify the absence of the mechanical backaction
onto the optics. Remarkably, this accurate approach allows us
to prove that the semiclassical predictions break down when
working very close to threshold, where cooling is shown to
disappear. These results might have strong implications not
only for future analysis, but also for previous results which
make use of semiclassical approaches while working very
close to threshold [22]. In the final section we apply c-MoP
theory to the full optomechanical problem and identify the
region of the parameter space where the mechanical backaction
on the optics is negligible (which contains the parameters of
our interest).

II. THE DEGENERATE OPTOMECHANICAL
PARAMETRIC OSCILLATOR

The system we consider is schematically represented in
Fig. 1. A crystal with second-order optical nonlinearity is
shared by two cavities with relevant resonances at frequencies
ωp (pump) and ωs ≈ ωp/2 (signal). The pump cavity is driven
by a resonant laser, so that photons in the signal cavity
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FIG. 1. Sketch of the degenerate optomechanical parametric
oscillator. We take crystalline whispering-gallery-mode resonators
[5–17] as a reference for our choice of parameters, but electromechan-
ical implementations are also possible using superconducting circuits
in the degenerate parametric oscillation configuration [27] coupled to
drum-shaped oscillating capacitors [28–30] (see also [31]).

can be generated via spontaneous down-conversion [1,4].
In addition, one of the mirrors of the signal cavity can
oscillate and is therefore optomechanically coupled to the
down-converted field via radiation pressure [18]. Let us define
the annihilation operators {aj }j=p,s,m for the pump (p), signal
(s), and mechanical (m) modes. Including losses of the optical
modes at rate γ0 (assumed to be the same for pump and signal
without loss of generality), as well as the irreversible energy
exchange of the mechanical mode with its thermal environment
at rate γm (with which, in the absence of light, it is in thermal
equilibrium with n̄th phonons), the master equation governing
the evolution of the DOMPO’s state ρ can be written as

ρ̇ = −i[H,ρ] + γ0Das
[ρ] + γ0Dap

[ρ]

+ γm(n̄th + 1)Dam
[ρ] + γmn̄thDa

†
m
[ρ]. (1)

We have defined the Lindblad superoperators DJ [·] =
2J (·)J † − J †J (·) − (·)J †J and the Hamiltonian

H = Hopt + �ma†
mam − �mηOMa†

s as(a
†
m + am), (2)

where we normalize the optomechanical coupling ηOM to
the frequency of the mechanical oscillation �m. The optical
Hamiltonian can be written in a picture rotating at the laser
frequency as

Hopt = �sa
†
s as + iεp(a†

p − ap) + i
χ

2

(
apa† 2

s − a†
pa2

s

)
, (3)

where �s = ωs − ωp/2 is the detuning of the signal mode
(which we take positive in this work), χ/2 is the down-
conversion rate, and εp is proportional to the square root of the
injected laser power.

In the classical limit, the steady-state phase diagram of the
DOMPO features a variety of phases [23]. Here we focus on
the regime where the state of the signal field is fully quantum,
i.e., where the trivial solution 〈as〉 = 0 is the only stable
one, henceforth referred to as the monostable phase, which
requires two conditions. First, defining the injection parameter
σ = εpχ/γ 2

0 and the normalized detuning � = �s/γ0, the
trivial solution becomes unstable in favor of a nontrivial one,
〈as〉 �= 0, for σ >

√
1 + �2 [23]. Hence, we write σ =√

1 + �2 x and focus on the x ∈ [0,1] region. Second, the
condition 4��η2

OM/η2
DC < 1 guarantees that the nontrivial

solution does not enter the x ∈ [0,1] region [23]. In this
expression we have introduced the dimensionless down-
conversion coupling ηDC = χ/γ0 as well as the sideband-
resolution parameter � = �m/γ0.

We emphasize that the vanishing signal-field amplitude
excludes the possibility of using a linearization approach
similar to those applied in [19–21] and [32–36]. In the
following, we provide a theory that works in the entire
x ∈ [0,1] region and use it to predict the action of the
down-converted field on the mechanical state.

III. EFFECTIVE MECHANICAL DYNAMICS

Despite the complexity of the problem, we remarkably find,
with the help of c-MoP theory, that for typical system parame-
ters the optical modes do not receive considerable backaction
from the mechanics. This property, which we justify in Sec. VI,
allows us to simplify the problem significantly via an adiabatic
elimination of the optical modes [32,37–40], leading to an
effective master equation for the reduced mechanical state
ρm(t). As we show in Appendix A, the mechanical steady
state can then be approximated by a thermal state (displaced
by 〈am〉 ≈ ηOMN̄s) characterized by its phonon number,

n̄m = n̄th + �+
1 + (�− − �+)

��1≈ n̄th

�
+ n̄FL, (4)

where � = �− − �+ is the cooling efficiency and n̄FL =
�+/� the fundamental limit for the phonon number. All the
information on the optical modes is contained in the heating
and cooling rates �± = C Re {γ0

∫∞
0 dτ exp(∓i�mτ ) s(τ )}

through the optical correlation function

s(τ ) = tr{a†
s as eLoptτ a†

s as ρ̄opt} − N̄2
s , (5)

where N̄s = tr{a†
s as ρ̄opt} is the signal photon number and

C = �Qη2
OM the bare cooperativity, with Q = �m/γm the

mechanical quality factor. Here, ρ̄opt is the steady state of the
optical Liouvillian,

Lopt[·] = −i[Hopt,·] +
∑

j=s,p

γ0Daj
[·]; (6)

that is, Lopt[ρ̄opt] = 0.
In the following we study the behavior of the steady-state

phonon number as we approach the DOMPO’s threshold.
From Eq. (4) it is clear that optimal cooling is then found
by simultaneously maximizing � and minimizing n̄FL.

The nonlinear nature of the parametric down-conversion
process in Eq. (6) and a potential backaction of the mechanical
mode preclude an exact treatment of the optical correlation
function in Eq. (5). To get simple analytic expressions that
enable physical insight, we first apply standard linearization
to the optical problem, which we denote the semiclassical
approach and has been the method of choice in previous
works [19–22]. Next, applying c-MoP theory [25] we show
the failure of the semiclassical approach close to the critical
point and find more accurate expressions at criticality, which
also allow us to justify the adiabatic elimination of the optical
modes.
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IV. SEMICLASSICAL APPROACH

Below threshold, the linearization of the DOPO is accom-
plished by treating the pump mode as a classical stationary
source, that is, by performing the replacement ap → εp/γ0

[2–4]. Within this approximation, the optical problem is
governed by a Gaussian single-mode Liouvillian,

γ −1
0 Lopt[·] = −i

[
�a†

s as + σ
(
a† 2

s − a2
s

)/
2, · ]+ Das

[·], (7)

from which any correlation function can easily be found,
allowing us to obtain analytical expressions for the relevant
quantities in Eq. (4), as we show in Appendix B. For the
fundamental limit, we find

n̄FL = [4 + (� − 2�)2]/8��, (8)

while the cooling efficiency can be written as

� = Qη2
OMN̄s(x)�f (�,δeff), (9)

where we have defined the function

f (�,δeff) = 8�2
[
�2 + 4

(
5 + δ2

eff

)]
(4 + �2)

[
�4 + 16

(
1 + δ2

eff

)2 + 8�2
(
1 − δ2

eff

)]
and a parameter, δeff = √

�2 − σ 2, that is shown later to
play the important role of an effective optical detuning. The
photon number N̄s(x) = x2/(2 − 2x2) is fully due to quantum
fluctuations and increases hyperbolically until the threshold
x = 1, where it diverges in this semiclassical approach.

In Fig. 2 we show the steady-state phonon number as
a function of the two control parameters, detuning � and
distance to threshold x, fixing the rest of the parameters to
typical values of cWGM resonators [9,10]. There are two
regions where significant cooling effects appear. One is in
the vicinity of the threshold point and can be traced back
to the vast increase in the photon number N̄s , which makes
� � 1 for virtually any value of the remaining parameters.
However, as we show below with the c-MoP approach, this
close to threshold the semiclassical approach breaks down,
hence rendering this prediction incorrect.

The other region, which turns out to be of major significance
when aiming for optimal cooling, corresponds to δeff ≈ �/2
(see the solid black line in Fig. 2). The c-MoP approach
confirms this prediction in the next section. Moreover, it can be
understood in physical terms by moving to a new picture de-
fined by the squeezing operator S(r) = exp[−ir(a†2

s + a2
s )/2],

with tanh 2r = σ/� (note that this transformation requires
� > σ , which corresponds in Fig. 2 to the region above
the dashed black line). This transformation diagonalizes the
Hamiltonian in the optical Liouvillian, (7), so that, defining
the parameters N̄eff = (�/δeff − 1)/2 and M = σ/2δeff, the
transformed state ρ̃ = S†(r)ρS(r) evolves according to

γ −1
0 ∂t ρ̃

= [−iδeffa
†
s as,ρ̃] + (N̄eff + 1)Das

[ρ̃] + N̄effDa
†
s
[ρ̃]

− [i�a†
mam,ρ̃] + (�/Q)

{
(n̄th + 1)Dam

[ρ̃] + n̄thDa
†
m
[ρ̃]

}
+ [

�ηOMM
(
a2

s a
†
m − a†2

s am

)
,ρ̃
]
, (10)

within the rotating-wave approximation, valid under the
conditions 4δ2

eff � σ and ηOM� � δeff (see Appendix C).
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FIG. 2. Steady-state phonon number as a function of � and x, as
obtained from a semiclassical description of the DOPO and a thermal
phonon number n̄th = 100 (achievable either with cryogenics [41]
or via a standard sideband precooling stage). We choose typical
parameters for cWGM resonators [10]: � = 10, ηOM = 10−4, and
Q = 106. Note that typical optical decay rates are in the megahertz
range, although only normalized quantities are relevant for our results.
The signal steady-state photon numbers N̄s(x) corresponding to the
ticked x values are shown on the upper axis, showing that cooling is
effective even with just ∼100 photons. On the other hand, c-MoP
theory has allowed us to prove that the cooling region closer to
the threshold disappears once this more accurate approach is used
(see Fig. 3).

Therefore, in this picture the signal field is turned into
a bosonic mode with oscillation frequency δeff and thermal
occupation N̄eff . The optomechanical coupling is dressed by
the squeezing parameter M , similarly to the dressing by
the intracavity-field amplitude in standard sideband cooling
[32,40]. However, differently from that case, the interaction
exchanges phonons with pairs of photons (rather than single
photons), thus explaining why δeff = �/2 is the resonance
condition for cooling. Under this condition, assuming that
2N̄eff � 1 and �2 � 4, we, furthermore, find � ≈ 2CM2N̄eff .
The cooling efficiency � thus receives an additional con-
tribution 2N̄eff from the effective thermal photon number,
which is a direct consequence of the nonlinear nature of
the effective optomechanical coupling in (10), which cannot
be found in standard sideband cooling, as we discuss in
Appendix C. This represents a natural example of the so-
called cooling-by-heating effect [26], where heating up the
optical field can contribute to making optomechanical cooling
more efficient. However, as is well known from standard
sideband cooling [42], thermal photons also contribute to
the fundamental limit, which indeed can be approximated by
n̄FL ≈ N̄eff/2 in our scenario. When the term n̄th/� dominates
over n̄FL in Eq. (4) the thermal optical background N̄eff can be
interpreted as “good noise,” while as soon as the fundamental
limit is reached it becomes “bad noise” and heats up the
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FIG. 3. The terms n̄th/� and n̄FL contributing to the steady-state
phonon number, (4), as a function of the distance-to-threshold
parameter x. We fix the detuning to � = 75, corresponding to the thin
solid horizontal line in Fig. 2, taking ηDC = 0.01 [9] and the rest of
the parameters as in Fig. 2. Inset: Closeup of the steady-state phonon
number n̄m for x ∈ [0.999,1], but without applying the rotating-wave
and Markov approximations [see Eq. (A5)]. Note that c-MoP gives
finite results equivalent to those found within the rotating-wave
approximation, while the semiclassical predictions diverge at the
threshold, which can be taken as further evidence that the theory
breaks down there.

mechanical motion (see the thick black curve in Fig. 2). We
discuss this phenomenon in more detail in Appendix C.

It is interesting to examine the limits that this bad noise
imposes on cooling. For the parameters in Fig. 3, compatible
with current cWGM resonators, it is found that the cooling
efficiency and the fundamental limit can be simultaneously
optimized to about � ≈ 85 and n̄FL ≈ 3 as a function of
the experimentally tunable parameters � and σ , precluding
ground-state cooling. However, the foreseeable increase in
the mechanical quality factor and the optomechanical cou-
pling by one order of magnitude in next-generation cWGM
resonators [10] will improve these numbers to � ≈ 400 and
n̄FL ≈ 0.15.

V. c-MoP APPROACH

The semiclassical approach has allowed us to gain analyti-
cal and physical insight into the problem. It is, however, well
known that this approximation fails close to the critical point,
although there is no systematic way of checking where exactly
within the semiclassical formalism itself. Hence, to determine
exactly where it breaks down and to find more accurate results
for those parameters, we make use of the recently developed
c-MoP technique [24,25], which allows us to find reduced
equations for the constituent parts of a composite system, even
in situations where there is significant backaction among its
parts and no time-scale separation between their dynamics.

For parameters compatible with cWGM resonators, the
theory is already regularized by using c-MoP only in the
optical problem (DOPO), which provides a more accurate
description of the optical correlation function, (5), and photon

number that enter the effective mechanical dynamics. The
application of c-MoP to the DOPO has been detailed in [25],
but we review its most relevant steps for completeness in
Appendix D. Specifically, we use a combination of c-MoP and
a Gaussian-state approximation, which provides an efficient
and accurate tool capable of regularizing the divergencies
and unphysical predictions of the semiclassical approach. In
particular, we show in Appendix D that at threshold the decay
rate of the optical correlator scales as γopt ∝ γ0ηDC(1 + �),
and the photon number as N̄s ∝ (1 + �)/ηDC, in contrast to
semiclassical results in which the former goes to 0 while the
latter diverges.

We show a very representative case for the phonon number
n̄m as a function of the distance to threshold x in Fig. 3.
The method shows perfect agreement with the semiclassical
predictions sufficiently below threshold, in particular, veri-
fying the cooling-by-heating effect presented above. Most
importantly, we find that the absolute minimum phonon
number is indeed reached when the resonance condition
δeff = �/2 is met. On the other hand, close to threshold we
find a significant correction with the semiclassical predictions
for the fundamental limit n̄FL. In particular, while this is
independent of the distance to threshold x in the semiclassical
picture, c-MoP shows that it actually increases very rapidly
as the critical point is approached, and hence no cooling is
found no matter how much the efficiency � is increased. This
is consistent with the fact that when � < σ (as happens at
threshold), δeff becomes imaginary and there is no resonance
for the optomechanical interaction.

VI. ABSENCE OF MECHANICAL BACKACTION
ON THE OPTICS

The adiabatic elimination of the optical fields which we
have used throughout the work relies on the time-scale
separation between the optical and the mechanical degrees
of freedom. In particular, this approach neglects mechanical
backaction on the optics, which is a good approximation as
long as the rate of any mechanical perturbation is much lower
than the intrinsic relaxation rate of the optics γopt. Far from the
critical point the optical relaxation rate is γ0, which usually
dominates over any other rate in the system. However, as the
critical point is approached the DOPO dynamics exhibits a
critical slowing-down, and its relaxation rate becomes lower
and lower. Hence, in our work, which considers parameters
close to threshold, it is very important to check that the desired
time-scale separation is present.

An intuitive argument supporting such a time-scale sepa-
ration follows from relating the mechanical backaction rate to
the optical frequency shift induced by the optomechanical in-
teraction, γback = ηOM�m〈xm〉 = 2η2

OM�mN̄s , where we have
used (A8). Hence, using the scaling of N̄s and γopt obtained in
the previous section at threshold, the condition γback � γopt

becomes 2�(ηOM/ηDC)2 � 1, which is very well satisfied
for the parameters that we work with. Moreover, note that
this condition is automatically satisfied when working within
the monostability condition 4��(ηOM/ηDC)2 < 1 as long as
� � 1/2.

We can set more rigorous bounds to the region where
mechanical backaction is negligible by using c-MoP theory
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[24,25], since, in contrast to adiabatic elimination methods, it
does not rely on the concept of time-scale separation or absence
of backaction effects. Hence, we apply this theory to the
DOMPO system by using the time-dependent c-MoPs Popt

t =
ρopt(t) ⊗ tropt{·} and Pm

t = trm{·} ⊗ ρm(t), that is, using a
bipartition “optics ⊗ mechanics” for the system. This approach
allows us to identify the terms contributing to the mechanical
backaction and find upper bounds to their scaling. Following
the procedure introduced in previous works [24,25], the c-MoP
equations for the reduced optical and mechanical states in the
asymptotic t → ∞ or steady-state limit are easily found to
read

dρ̄m

dt
= 0 = Lmρ̄m + i�mηOM〈a†

s as〉[xm,ρ̄m]

−�2
mη2

OM

[
xm,

∫ ∞

0
dτ eLmτ (δxmρ̄ms(τ ) − H.c.)

]
,

(11a)

dρ̄opt

dt
= 0 = Loptρ̄opt + i�mηOM〈xm〉[a†

s as,ρ̄opt]

−�2
mη2

OM

[
a†

s as,

∫ ∞

0
dτ eLoptτ (δnsρ̄opt sm(τ )−H.c.)

]
,

(11b)

where, for any operator A, we have introduced the usual
definitions 〈A〉 = tr{A(ρ̄s ⊗ ρ̄p)} and δA = A − 〈A〉, while
δns = a

†
s as − 〈a†

s as〉. s(τ ) is the usual optical correlation
function, (5), and we have defined the mechanical correlation
function

sm(τ ) = trm{xmeLmτ δxmρ̄m} = e(−i�m−γm)τ

+ [
e(−i�m−γm)τ

(〈δa†
mδam〉 + 〈

δa2
m

〉)+ H.c.
]
, (12)

where the final expression is easily found by following a
procedure similar to the one reported in Appendix B for
the semiclassical optical correlation function, since Lm is
quadratic.

The last two terms on the right-hand side of Eq. (11b)
account for the mechanical backaction on the optics, and
we proceed now to bound their effect. The second-to-last
term describes precisely the optical detuning �mηOM〈xm〉
induced by the optomechanical interaction that we discuss
at the beginning of the section, concluding that it is negligible
within our parameter regime. Then we focus on the last term
in Eq. (11b), the Born term. For this purpose we derive the
steady-state equation for the moment 〈a†2

s 〉 (note that the
equation of motion of 〈a†

s as〉 receives no explicit mechanical
backaction even within c-MoP theory), which reads

0 = tropt
{
a†2

s Loptρ̄opt
}− 2i�mηOM〈xm〉〈a†2

s

〉
+ 2�2

mη2
OM

∫ ∞

0
dτ Re{sm(τ )} tropt

{
a†2

s eLoptτ [a†
s as,ρ̄opt]

}
+ 2i�2

mη2
OM

∫ ∞

0
dτ Im{sm(τ )} tropt

{
a†2

s eLoptτ {δns,ρ̄opt}
}
,

(13)

where {·,·} denotes the anticommutator. First, note that
the correlation functions tropt{a†2

s eLoptτ [a†
s as,ρ̄opt]} and

tropt{a†2
s eLoptτ {δns,ρ̄opt}}, which have a structure similar to that

of the optical correlation function s(τ ), decay to 0 at a rate
γopt. Next, we derive upper bounds for the last two terms in
Eq. (13). For the second-to-last term we find∣∣∣∣2�2

mη2
OM

∫ ∞

0
dτ Re{sm(τ )} tropt

{
a†2

s eLoptτ [a†
s as,ρ̄opt]

}∣∣∣∣
�
∣∣∣∣2�2

mη2
OM

Re{sm(0)} tropt
{
a
†2
s eLopt0[a†

s as,ρ̄opt]
}

γm + γopt

∣∣∣∣
� 4�2

mη2
OMn̄m

γm + γopt︸ ︷︷ ︸
γ ′

back

∣∣〈a†2
s

〉∣∣, (14)

where in the last step we have used sm(0) = 1 + 〈δa†
mδam〉 +

〈δa2
m〉 ≈ 〈δa†

mδam〉 ≡ n̄m (note that we expect the mechanical
state to stay approximately thermal, and hence 〈δa2

m〉 ≈ 0)
and tropt{a†2

s [a†
s as,ρ̄opt]} = 〈[a†2

s ,a
†
s as]〉 = 2〈a†2

s 〉. Similarly,
for the last term in Eq. (13) we find∣∣∣∣2i�2

mη2
OM

∫ ∞

0
dτ Im{sm(τ )} tropt

{
a†2

s eLoptτ {δns,ρ̄opt}
}∣∣∣∣

�
∣∣∣∣2�2

mη2
OM

tropt
{
a
†2
s eLopt0{δns,ρ̄opt}

}
γm + γopt

∣∣∣∣
� 2�2

mη2
OM

γm + γopt

∣∣tropt
{
a†2

s {δns,ρ̄opt}
}∣∣

≈ 4�2
mη2

OM(2N̄s + 1)

γm + γopt︸ ︷︷ ︸
γ ′′

back

∣∣〈a†2
s

〉∣∣, (15)

where for the last expression we have used tropt{a†2
s {δns,

ρ̄opt}} = 2(〈a†3
s as〉−〈a†2

s 〉〈a†
s as〉 + 〈a†2

s 〉) ≈ 2(2N̄s + 1)〈a†2
s 〉,

within the Gaussian-state approximation, (B6), that is,
〈a†3

s as〉 ≈ 3〈a†2
s 〉〈a†

s as〉, noting that 〈as〉 = 0 below threshold.
A sufficient condition for mechanical backaction to be

negligible is then γ ′
back,γ

′′
back � γopt. We proceed to check

whether this is the case in our work. Note first that γm � γopt

even at threshold, since γopt/γm ∼ γ0ηDC(1 + �)/γm � 1 for
the parameters we are interested in. Using the scalings γopt ∝
γ0ηDC(1 + �) and N̄s ∝ (1 + �)/ηDC at threshold (where
these bounds are the tightest), we can then write the conditions
under which backaction is negligible as

γ ′
back

γopt
∼ �2n̄mη2

OM

η2
DC(1 + �)2

� 1, (16a)

γ ′′
back

γopt
∼ �2η2

OM

η3
DC(1 + �)

� 1. (16b)

For the parameter set in Fig. 2 these lead to the conditions
n̄m � 100(1 + �)2 and 1 + � � 1, respectively. For the large
values of � that we use throughout most of the work, these
conditions are very well satisfied. For small � they seem to be
too tight, but we need to stress here that we have been extremely
conservative when estimating the Born terms, (14) and (15),
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meaning that, in practice, backaction should be negligible even
in a much broader region of the parameter space.

Overall, c-MoP theory has allowed us to quantify the
mechanical backaction on the optics in a rigorous manner. We
have obtained very conservative bounds that the system param-
eters must satisfy in order for such backaction to be negligible,
showing that this is indeed the case for the parameters used
in our work, which are compatible with an implementation
based on cWGM resonators. It is, however, foreseeable that
such devices, as well as their electromechanical counterparts,
will be able to study regions where backaction is significant,
in which case the c-MoP approach presented in this section
will be very useful.

VII. CONCLUSIONS

By exploiting adiabatic elimination techniques, semiclassi-
cal methods, and c-MoP theory, we have provided a theoretical
analysis of the DOMPO which works even at the critical point.
We have focused on the region where the optical field is fully
quantum, showing that such a quantum-correlated field with no
coherent component can induce significant mechanical cooling
through a cooling-by-heating mechanism. c-MoP techniques
have allowed us to check the validity of the optical adia-
batic elimination as well as the semiclassical approximation,
whose predictions have indeed been shown to break down at
threshold, showing the potential of c-MoP to treat dissipative
quantum-optical problems in the vicinity of critical points.
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APPENDIX A: ELIMINATION OF THE OPTICAL MODES

Here we present a derivation of the effective mechanical
master equation leading to the phonon number of Eq. (4) in
the text. Our starting point is the master equation governing
the evolution of the state ρ(t) of the DOMPO, Eq. (1), which,
for convenience, we rewrite here as

∂tρ = Lopt[ρ] + Lm[ρ] + LOM[ρ], (A1)

with

Lopt[ρ] =
[
−i�sa

†
s as +

(
εpa†

p + χ

2
apa† 2

s − H.c.

)
,ρ

]
+ γ0Dap

[ρ] + γ0Das
[ρ], (A2a)

Lm[ρ] = [−i�ma†
mam,ρ] + γm(n̄th + 1)Dam

[ρ]

+ γmn̄thDa
†
m
[ρ], (A2b)

LOM[ρ] = [i�mηOMa†
s as(am + a†

m),ρ]. (A2c)

All the quantities are defined in the text, and we recall the
notation DJ [ρ] = 2JρJ † − J †Jρ − ρJ †J for superoperators
in Lindblad form.

In order to eliminate the optical modes and find an
effective master equation for the mechanical state ρm(t), we
proceed as follows. We first define the projector superoperator
P[·] = ρ̄opt ⊗ tropt{·}, whose action on the full state ρ(t) of the
DOMPO is P[ρ(t)] = ρ̄opt ⊗ ρm(t). Here, ρ̄opt is the steady
state of the optical Liouvillian, that is,Lopt[ρ̄opt] = 0. Applying
this superoperator and its complement 1 − P to the master
equation, and formally integrating the latter, we obtain an exact
equation of motion for ρm(t), the so-called Nakajima-Zwanzig
equation [37,38]. This equation is not solvable, and therefore
we apply a Born approximation, which takes into account
terms up to second order in the optomechanical interaction.
The resulting equation reads

ρ̇m(t) = Lmρm(t) + i�mηOMN̄s[xm,ρm(t)]

−�2
mη2

OM

[
xm,

∫ t

0
dτ eLmτ [xmρm(t − τ )s(τ ) − H.c.]

]
,

(A3)

where we have defined the mechanical position quadra-
ture, xm = am + a

†
m, the photon number in the signal mode

N̄s = tr{a†
s as ρ̄opt}, and the optical correlation function,

s(τ ) = tr{a†
s ase

Loptτ [a†
s as ρ̄opt]} − N̄2

s . (A4)

It is well known that the steady-state ρ̄opt of the DOPO
is unique (which intuitively stems from the fact that both the
pump and the signal modes have local dynamics leading to
unique steady states, and the parametric interaction preserves
that uniqueness), and hence eLoptτ is a relaxing map [43,44],
mapping all optical operators O into the steady state, that is,
limτ→∞ eLoptτ [O] = tropt{O}ρ̄opt. Thus, the optical correlation
function s(τ ) will always decay to 0 within some finite memory
time, which we denote τopt. Hence, in the asymptotic limit
we can write limt→∞ ρm(t − τ ) = limt→∞ ρm(t) ≡ ρ̄m in the
integral kernel of Eq. (A3), obtaining an equation for ρ̄m which
is quadratic in the operators am and therefore allows for a
Gaussian-state solution [45,46]. In other words, the equations
for the first and second steady-state mechanical moments form
a closed linear algebraic set,

0 = (−i�m − γm)〈am〉 + i�mηOMN̄s − �2
mη2

OMRe{d0}〈xm〉,
(A5a)

0 = γm(n̄th − 〈δa†
mδam〉) − �2

mηOMRe
{
(d+ − d−)〈δa†

mδam〉
+ (d∗

− − d+)
〈
δa2

m

〉− d−
}
, (A5b)

0 = (−i�m − γm)
〈
δa2

m

〉− �2
mη2

OM

[
(d− − d∗

+)〈δa†
mδam〉

+ (d+ − d∗
−)
〈
δa2

m

〉+ d−
]
, (A5c)

where we have used the abbreviations 〈A〉 = tr{Aρ̄m}, δA =
A − 〈A〉, and

d0 =
∫ ∞

0
dτs(τ ), (A6a)

d± =
∫ ∞

0
dτ e(±i�m−γm)τ s(τ ). (A6b)
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These equations can be solved for the steady-state mo-
ments as functions of the optical photon number N̄s and
correlation function s(τ ) without the need for further ap-
proximations. However, in order to obtain more physical
insight into the mechanical steady-state ρ̄m we apply both
the Markov approximation and a rotating-wave approximation
to Eq. (A3). The Markov approximation is based on the
assumption that within the optical memory time τopt all the
mechanical dynamics can be neglected except for the evolution
provided by the free Hamiltonian �ma

†
mam. As a result,

we can write eLmτ [xmρm(t − τ )] ≈ xm(τ )ρm(t) with xm(τ ) =
ei�mτ am + e−i�mτ a

†
m. On the other hand, the rotating-wave

approximation consists of neglecting all the terms proportional
to a2

m and a
†2
m in the effective mechanical master equation,

under the assumption that their rotation at frequency 2�m is
much larger than the rates they are weighted by. After applying
these approximations in Eq. (A3) we are left with an effective
mechanical master equation given by

ρ̇m = Lmρm + i�mηOMN̄s[xm,ρm]

+ γm�−Dam
[ρm] + γm�+Da

†
m
[ρm], (A7)

where the heating and cooling rates γm�± = �2
mη2

OM
Re{d∓|γm=0} coincide precisely with those defined in the text.
This master equation has a very simple Gaussian steady-state
ρ̄m corresponding to a displaced thermal state with mean

〈am〉 = i�mηOMN̄s

i�m + γm

≈ ηOMN̄s, (A8)

phonon number 〈δa†
mδam〉 = n̄m, where n̄m is given by Eq. (4)

in the text, and 〈δa2
m〉 = 0. We note that, starting from a thermal

state, the mechanical mode relaxes to this steady state at a rate
γeff = γm(1 + �), where � = �− − �+ is what we call the
cooling efficiency in the text, since the equations of motion
for the phonon number fluctuations and the mechanical-field
amplitude are given by

∂t 〈δa†
mδam〉 = −2γm(1 + �) 〈δa†

mδam〉 + 2γm(n̄th + �−),

∂t 〈am〉 = [−i�m − γm(1 + �)] 〈am〉 + iηOM�m〈a†
s as〉.
(A9)

We have checked that this rate γeff is lower than the decay rate
of the optical correlator s(τ ) for the parameters of interest,
hence making the Markov a valid approximation.

Let us remark that throughout the work we have been
using both Eqs. (A3) and (A7) to obtain the steady-state
moments of the mechanical oscillator. We have never observed
any notable differences between them, except when working
extremely close to threshold within the semiclassical approach
(see the inset in Fig. 3). In these cases, however, the failure
of Eq. (A7) can be directly attributed to the failure of the
semiclassical approach, and not to the failure of the rotating-
wave approximation itself, which indeed is very well satisfied
as shown by the c-MoP approach. Thus, we conclude that
for the parameter regime studied in this work (compatible
with current cWGM resonators) the state of the mechanical
oscillator is indeed a displaced thermal state, with a phonon
number that can only be evaluated once the optical photon
number N̄s and correlation function s(τ ) are known.

APPENDIX B: SEMICLASSICAL APPROACH

The simplest way to obtain the optical correlator s(τ ) is
by using standard linearization on Lopt. In this approach,
we move to a displaced picture in which the large coherent
background of the pump mode is removed and then keep
the terms of the transformed optical Liouvillian only up
to second order in the bosonic operators. The displacement
operator D = exp[εp(ap − a

†
p)/γ0] allows us to move to the

new picture, in which the transformed optical state ρ̃opt =
D†ρoptD evolves according to a transformed Liouvillian,
L̃opt = D†LoptD. Removing terms beyond quadratic order,
this transformed Liouvillian can be written as the sum of
independent Liouvillians for the pump and signal modes,
L̃opt = Lp + Ls , with Lp = γ0Dap

and

γ −1
0 Ls(·) =

[
−i�a†

s as + σ

2

(
a†2

s − a2
s

)
, ·
]

+ Das
[·], (B1)

with the injection parameter σ = εpχ/γ 2
0 and normalized

detuning � = �s/γ0. Consequently, the optical steady state
in the original picture becomes the separable state ρ̄opt =
|εp/γ0〉〈εp/γ0| ⊗ ρ̄s , where |εp/γ0〉 is a coherent state of
amplitude εp/γ0 and ρ̄s is the Gaussian state satisfying
Ls[ρ̄s] = 0. The latter is completely characterized by its first
and second moments, which are trivially found to be 〈as〉 =
0, 〈a†

s as〉 = σ 2/2(1 + �2 − σ 2) ≡ N̄s and 〈a2
s 〉 = σ (1 − i�)/

2(1 + �2 − σ 2), where we use the usual notation 〈A〉 =
trs{Aρs} for any operator A acting on the signal subspace.

The optical correlation function simplifies to s(τ ) =
tr{a†

s ase
Ls τμs}, where we have defined a traceless operator,

μs = (a†
s as − N̄s)ρ̄s . Using again the fact that the Liouvillian

Ls is Gaussian, it is simple to evaluate the correlation function
s(τ ). Toward this aim, let us define the column vector

�v(τ ) = col
(
˜〈a†

s as〉,
〈̃
a2

s

〉
,
˜〈
a
† 2
s

〉)
, (B2)

where the expectation value of an operator A with a tilde is
defined as 〈̃A〉 = tr{AeLs τμs}. Taking the derivative of this
vector with respect to τ , we find the linear system ∂τ �v(τ ) =
L�v(τ ), where the matrix M reads

L = γ0

⎛⎜⎝−2 σ σ

2σ −2(1 + i�) 0

2σ 0 −2(1 − i�)

⎞⎟⎠. (B3)

It is straightforward to solve this linear system, for example,
by diagonalizing L. We write L = U�U−1, with a similarity
matrix U that can be found analytically (but its expression
is too lengthy to be reported here) and a diagonal matrix
� containing the eigenvalues of L, λ1 = −2γ0, and λ2,3 =
−2γ0(1 ± i

√
�2 − σ 2). Note that for σ > � the square root

becomes imaginary, making λ2 < γ0, and in fact λ2 = 0 at
threshold, σ = √

1 + �2. Consequently, we call the region
with σ > � the critical slowing-down regime. The solution of
the linear system is then found as

�v(τ ) = Ue�τU−1�v(0) ≡
3∑

n=1

Lne
λnτ �u, (B4)
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where we have defined the initial condition vector

�u = �v(0) = col
(〈a†

s asa
†
s as〉 − N̄2

s ,
〈
a2

s a
†
s as

〉
− 〈

a2
s

〉
N̄s,

〈
a†3

s as

〉− 〈
a2

s

〉∗
N̄s

)
, (B5)

and the matrices Ln = U�nU
−1, where (�n)j l = δjnδln. Note

that the vector �u is formed by fourth-order moments. In order
to find them, we simply exploit the Gaussian structure of Ls ,
which allows us to express moments of any order as products
of moments of first and second order. Specifically, concerning
third- and fourth-order moments we simply use〈

δa†
s δa

2
s

〉 = 〈
δa3

s

〉 = 0, (B6a)〈
δa†2

s δa2
s

〉 = 〈
δa†2

s

〉〈
δa2

s

〉+ 2〈δa†
s δas〉2, (B6b)〈

δa†
s δa

3
s

〉 = 3〈δa†
s δas〉

〈
δa2

s

〉
, (B6c)

where δas = as − 〈as〉. Note that the optical correlation
function we are looking for is given by the first component
of the vector, s(τ ) = [�v(τ )]1, and the integrals appearing in
d0 and d± in Eq. (A6) can be easily evaluated due to the
exponential τ dependence of �v(τ ) in Eq. (B4).

APPENDIX C: COOLING BY HEATING
VIA A TWO-PHOTON PROCESS

In the text we have shown that significant cooling
can be obtained when working in the resolved sideband
regime � = �m/γ0 � 1 and close to the resonance condition
δeff = √

�2 − σ 2 = �/2. We have interpreted this phe-
nomenon as a cooling-by heating effect, for which we have
moved to a new picture defined by the squeezing operator
S(r) = exp[−ir(a†2

s + a2
s )/2] within the semiclassical ap-

proach explained above. Here we want to explicitly perform an
adiabatic elimination of the optical mode in this picture, which
will allow us to gain more insight into the cooling mechanism.

Let us first write the master equation in this “squeezed
picture.” The transformation diagonalizes the Hamiltonian in
the optical Liouvillian, (B1), turning it into

γ −1
0 S†(r)LoptS(r)[·] = i[δeffa

†
s as,·] + (1 + N̄eff)Das

[·]
+ N̄effDa

†
s
[·] + iMKas

[·] − iMK
a
†
s
[·],

(C1)

where we have defined the superoperator KJ [·] = 2J (·)
J − J 2(·) − (·)J 2, as well as the parameters N̄eff = (�/δeff −
1)/2 and M = σ/2δeff. Note that the K terms rotate at fre-
quency 2δeff and, hence, are highly suppressed when we work
within the cooling condition δeff ≈ �/2 and with M/2δeff =
σ/4δ2

eff � 1 (rotating-wave approximation). Therefore, as
mentioned in the text, in this picture the signal field is turned
into a bosonic mode with oscillation frequency δeff and at ther-
mal equilibrium with occupation N̄eff . On the other hand, the
photon-number operator is transformed into S†(r)a†

s asS(r) =
N̄eff + (2N̄eff + 1)a†

s as + iM(a2
s − a

† 2
s ), and hence the op-

tomechanical interaction can be approximated by

S†(r)a†
s asS(r)(am + a†

m) ≈ iM
(
a2

s a
†
m − a†2

s am

)
(C2)

within the rotating-wave approximation as long as
ηOM(2N̄eff + 1) = ηOM�/δeff � 1.

Hence, within these conditions, the transformed state
ρ̃ = S†(r)ρS(r) evolves according to a master equation that
we write as

∂t ρ̃ = L̃s[ρ̃] + Lm[ρ̃] + L̃OM[ρ̃], (C3)

with

L̃s[ρ̃] = [−iγ0δeffa
†
s as,ρ̃] + γ0(N̄eff + 1)Das

[ρ̃]

+ γ0N̄effDa
†
s
[ρ̃], (C4a)

Lm[ρ̃] = [−i�ma†
mam,ρ̃] + γm(n̄th + 1)Dam

[ρ̃]

+ γmn̄thDa
†
m
[ρ̃], (C4b)

L̃OM[ρ̃] = [
�mηOMM

(
a2

s a
†
m − a†2

s am

)
,ρ̃
]
, (C4c)

where N̄eff and M are defined in the text. The structure of
this master equation is similar to the original one, Eq. (A1),
with the only difference that the optical Liouvillian is replaced
by L̃s , corresponding to a single mode at finite tempera-
ture, and the optomechanical interaction a

†
s as(am + a

†
m), by

iM(a2
s a

†
m − a

†2
s am). The adiabatic elimination of the optical

mode can be carried out in exactly the same way as in
Appendix A, and under the cooling condition δeff = �/2 it
would lead to the heating and cooling rates

�− ≈ 1
2CM2tr

{
a2

s a
†2
s ρ̃s

}
, (C5a)

�+ ≈ 1
2CM2tr

{
a†2

s a2
s ρ̃s

}
, (C5b)

where C = �2
mη2

OM/γmγ0 is the bare optomechanical cooper-
ativity, and ρ̃s is a thermal state with mean photon number
N̄eff . The cooling efficiency is then given by

� = �− − �+ = 1
2CM2tr

{[
a2

s ,a
†2
s

]
ρ̃s

} = 2CM2
(
N̄eff + 1

2

)
.

(C6)

The cooling-by-heating effect is clearly seen because the
cooling efficiency increases with the effective thermal photon
number N̄eff . But it is important to note that this enhancement
of the cooling efficiency is a direct consequence of the
commutator appearing in the trace, contributing as [a2

s ,a
†2
s ] =

4a
†
s as + 2, which in turn comes from the fact that the effective

optomechanical interaction i(a2
s a

†
m − a

†2
s am) corresponds to

the exchange of phonons with pairs of photons. In the usual
sideband laser-cooling scenario, the effective optomechanical
interaction is bilinear, e.g., i(asa

†
m − a

†
s am), meaning that the

commutator in the expression above is replaced by [as,a
†
s ] = 1,

and hence the thermal photonic background does not enter the
cooling efficiency.

Let us, finally, note that the fundamental limit can be written
as

n̄FL = �+
�

= tr
{
a
†2
s a2

s ρ̃s

}
tr
{[

a2
s ,a

†2
s

]
ρ̃s

} = N̄2
eff

2N̄eff + 1
N̄eff�1−−−→ N̄eff

2
,

(C7)
which increases linearly with the effective thermal photon
number. Hence, as explained in the text, the cooling-by-heating
mechanism is optimized by finding a proper trade-off between
the increase in the cooling efficiency (good noise) and the

023819-8



DEGENERATE OPTOMECHANICAL PARAMETRIC . . . PHYSICAL REVIEW A 93, 023819 (2016)

increase in the fundamental limit (bad noise). It is to be noted
that within the usual sideband laser cooling, any thermal
background will still contribute to this fundamental limit,

n̄FL = tr{a†
s asρs}/tr{[as,a

†
s ]ρs} N̄eff�1−−−→ N̄eff , but as explained

above, it provides no enhancement of the cooling efficiency
�. In other words, in standard sideband cooling the thermal
background acts only as “bad” noise.

We emphasize that these expressions for � and n̄FL

agree with the ones provided in the text, which were first
calculated exactly within the semiclassical approach and then
approximated to leading order in 1/�2 for δeff = �/2.

APPENDIX D: c-MoP APPROACH TO THE OPTICAL
PROBLEM AND SCALINGS AT THE CRITICAL POINT

Despite the analytical and physical insight that it provides,
the semiclassical approach suffers from several issues, most
importantly its divergent character at threshold, which shows
that it cannot be trusted when working close to this point.
Unfortunately, there is no systematic way of checking within
the formalism itself where exactly it fails. This question can
only be answered by comparing it to a more accurate approach.
Toward this aim, we have applied our recently developed c-
MoP theory [24,25]. In particular, this approach has allowed
us to characterize optical steady-state observables such as the
photon number N̄s and the correlation function s(τ ) in all
relevant parameter space, including the threshold.

We have detailed the application of c-MoP theory [24] to
the DOPO problem in [25], including its combination with
the Gaussian-state approximation that we use in this work,
which was shown to be quite accurate for both steady-state
quantities and dynamics. Let us now briefly introduce this
approach here for completeness, keeping in mind that details
can be looked up in [25]. Our main goal consists of finding the
optical correlation function, (5), for which we need to solve
the dynamics generated by the optical Liouvillian Lopt, that is,
the DOPO dynamics,

ρ̇opt = Loptρopt. (D1)

This is a nonlinear two-mode problem with no analytic solution
and whose direct numerical simulation becomes unfeasible
already for moderate photon numbers. In contrast, c-MoP
theory works with the reduced states of the pump and signal
modes, ρp(t) = trs{ρopt} and ρs(t) = trp{ρopt}, respectively,
whose coupled dynamics are approximated by the set of
nonlinearly coupled equations,

ρ̇s(t) = Lsρs(t) + χ

2

[
a†2

s 〈ap〉(t) − a2
s 〈a†

p〉(t),ρs(t)
]

+
(

χ

2

)2{[
a2

s , hs(t)
]+ H.c.

}
, (D2a)

ρ̇p(t) = Lpρp(t) + χ

2

[
ap

〈
a† 2

s

〉
(t) − a†

p

〈
a2

s

〉
(t) ,ρp(t)

]
+
(

χ

2

)2
{[

ap ,

3∑
n=1

hp,n(t)

]
+ H.c.

}
, (D2b)

ḣs(t) = (−γp + Ls)hs(t) + Ks(t,t)ρs(t), (D2c)

ḣp,n(t) = (λn + Lp)hp,n(t) + Kp,n(t,t)ρp(t), (D2d)

where hs(t) and {hp,n(t)}n=1,2,3 are auxiliary operators acting
on the signal and pump subspaces (introduced to turn the
c-MoP equations into ordinary differential equations, since
originally they have an integrodifferential structure [25]), and
we refer to [25] for the definitions of the superoperators
Ls , Lp, Ks(t,t ′), and Kp,n(t,t ′). Denoting by Ds and Dp

the dimensions of the truncated Hilbert spaces of the signal
and pump in a numerical simulation, we see that the original
problem, (D1), requires solving a Ds × Dp system, whereas
there are only 2Ds + 4Dp c-MoP equations (or even fewer if
the quadratic or Gaussian structure of the pump equations is
exploited).

Nevertheless, even though c-MoP allows us to gain
numerical insight into a larger region of parameter space,
the simulation of problems with very large photon numbers
(such as the ones we work with close to threshold) is still
challenging. It is in these regions where a Gaussian-state
approximation becomes extremely useful. As the name
suggests, this approximation consists of assuming that the
reduced signal and pump states are Gaussian, meaning that
they are completely characterized by first- and second-order
moments. Under such circumstances, we can approximate
third- and fourth-order moments of ρ̄s as in (B6), and the
c-MoP equations provide a closed set of nonlinear equations
for the first- and second-order moments of the operators ρs(t),
ρp(t), hs(t), and {hp,n(t)}n=1,2,3. The steady-state moments
can then be efficiently found simply by finding the stationary
solutions of these equations.

As an example, in Fig. 4(a) we show the steady-state photon
number N̄s at the critical point (x = 1) as a function of the
normalized detuning �. It shows a clear linear dependence on
� > 1, which, together with the well-known η−1

DC scaling with
the down-conversion coupling [25,47–49], provides an overall
N̄s ∝ (1 + �)/ηDC scaling of the signal photon number at
threshold. The knowledge of this scaling plays an important
role in the determination of the conditions under which
mechanical backaction on the optics can be neglected, as
explained in Sec. VI.

Let us now explain how the optical correlation function can
be evaluated within this framework. First, note that we can
rewrite it as

s(τ ) = N̄s (tr{a†
s asν(τ )} − N̄s), (D3)

where ν(t) = eLoptt ν(0) can be interpreted as an operator with
evolution equation ν̇ = Loptν and initial condition ν(0) =
a
†
s as ρ̄opt/N̄s . Since this evolution equation is formally equiva-

lent to the optical master equation, (D1), we can apply c-MoP
theory directly to ν(t), approximating it by a separable oper-
ator νs(t) ⊗ νp(t), with νp(t) = trs{ν(t)} and νs(t) = trp{ν(t)}
evolving according to Eqs. (D2) with ρj replaced by νj . Under
a Gaussian approximation for νs(t) similar to (B6) but with
expectation values defined with respect to νs(t), the evolution
equations for the first and second moments of νs(t), νp(t),
hs(t), {hp,n(t)}n=1,2,3, and their Hermitian conjugates (note
that ν is not Hermitian) form a closed nonlinear system which
we can solve again efficiently. Note that the initial conditions
for these moments, e.g., tr{a†

s asν(0)} = tr{a†
s asa

†
s as ρ̄opt}/N̄s ,

are found from the Gaussian c-MoP steady-state solutions as
explained above.
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FIG. 4. (a) Steady-state photon number N̄s = tr{a†
s as ρ̄opt} at the critical point as a function of the normalized detuning �. (b) Absolute

value of the normalized optical correlation function s(τ ) at the critical point for different values of detuning as of function of the normalized
time γoptτ , with γopt = γ0ηDC(1 + �). In both panels the parameters are γ0 = 1 and ηDC = 0.01, and we obtained them by applying Gaussian
c-MoP theory to the optical problem.

In Fig. 4(b) we show the evolution of the absolute value
of the correlation function s(τ ) at the critical point and
for different values of the normalized detuning �. Time is
normalized to [γ0ηDC(1 + �)]−1, and hence the fact that all

the curves decay on the same time scale proves that the optical
relaxation time scales as γopt = γ0ηDC(1 + �) at threshold.
This again plays a fundamental role when proving that
mechanical backaction is negligible, as discussed in Sec. VI.
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