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Abstract. We propose a scheme involving cold atoms trapped in optical lattices
to observe different phenomena traditionally linked to quantum-optical systems.
The basic idea consists of connecting the trapped atomic state to a non-trapped
state through a Raman scheme. The coupling between these two types of
atoms (trapped and free) turns out to be similar to that describing light–matter
interaction within the rotating-wave approximation, the role of matter and
photons being played by the trapped and free atoms, respectively. We explain
in particular how to observe phenomena arising from the collective spontaneous
emission of atomic and harmonic oscillator samples, such as superradiance
and directional emission. We also show how the same setup can simulate
Bose–Hubbard Hamiltonians with extended hopping as well as Ising models
with long-range interactions. We believe that this system can be realized with
state of the art technology.
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1. Introduction

Cold atoms trapped in optical lattices have been proved to be very versatile quantum systems in
which a large class of many-body condensed matter Hamiltonians can be simulated (see [1]–[3]
for extensive reviews on this subject). One of the first proposals in this direction was the article
by Jacksch et al [4], where it was proved that the dynamics of cold atoms trapped in optical
lattices is described by the Bose–Hubbard Hamiltonian provided that certain conditions are
satisfied; shortly after, the superfluid-to-Mott insulator phase transition characteristic of this
Hamiltonian was observed in the laboratory [5]. Since then, the broad tunability of the lattice
parameters, and the increasing ability to trap different kinds of particles (such as bosonic and
fermionic atoms with arbitrary spin or polar molecules), has allowed theoreticians to propose
optical lattices as promising simulators for different types of generalized Bose–Hubbard and
spin models that are in close relation to important condensed-matter phenomena [1]–[3].
Recent experiments have shown that optical lattices can be used to address open problems in
physics such as high-Tc superconductivity [6], to study phenomena in low dimensions such
as the Berezinskii–Kosterlitz–Thouless transition [7] or to implement quantum computation
schemes [8].

In this paper, we keep digging into the capabilities of optical lattices as simulators, showing
how they can also be a powerful tool for simulating quantum-optical phenomena. In particular,
following our previous proposal [9], we introduce various schemes in which superradiance-
like phenomena can be observed. In addition, we will show that these same schemes realize
Bose–Hubbard and spin models with extended interactions (in particular, models where hopping
between sites and ferromagnetic interactions between spins are long-range instead of nearest
neighbors).

The concept of superradiance was introduced by Dicke in 1954 when studying the
spontaneous emission of a collection of two-level atoms [10] (see [11] for a review). He
showed that certain collective states where the excitations are distributed symmetrically over
the whole sample have enhanced emission rates. Probably the most stunning example is the
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single-excitation symmetric state (now known as the symmetric Dicke state), which, instead
of decaying with the single-atom decay rate 00, was shown to decay with N00, N being the
number of atoms. He also suggested that the emission rate of the state having all the atoms
excited should be enhanced at the initial steps of the decay process, which was a very interesting
prediction from the experimental point of view, as this state is in general easier to prepare.
However, Dicke used a very simplified model in which all the atoms interact with a common
radiation field within the dipolar approximation; almost 15 years later, and motivated by the new
atom-inversion techniques, several authors showed that dipolar interactions impose a threshold
value for the atom density, that is, for the number of interacting atoms, in order for superradiance
to appear [12]–[14].

It is worth noting that together with atomic ensembles, spontaneous emission of collections
of harmonic oscillators were also studied at that time [13]. Two interesting features of this sys-
tem were reported: (i) an initial state with all of the harmonic oscillators excited does not show
rate enhancement; on the contrary, most excitations remain within the sample in the steady state,
while (ii) the state having all of the oscillators in the same coherent state has a superradiant rate.

In recent years, there has been renewed interest in this phenomenology because of its
potential for quantum technologies [15]–[20]. In these new approaches, superradiant effects
differ from those found by Dicke in that they are mediated by the initial entanglement of the
emitters, not by a buildup of their coherence. Of particular interest to the present work is the
analysis performed in [18] (see also [17]) of the spontaneous emission by regular arrays of
atoms separated by a distance d0 comparable to the wavelength λ of the emitted radiation. It
was shown that directional emission can be obtained for particular single-excitation entangled
states when λ > 2d0, the emission rate being enhanced by a factor χ ∝ (λ/d0)

2 N 1/3.
Also of interest for our purposes is the work carried out by Sajeev John and

collaborators [21, 22] on the collective emission of atoms embedded in photonic band-gap
materials. In this kind of material, the density of states of the electromagnetic field is zero for
frequencies lying within the gap, which gives rise to the phenomenon of light localization [23].
As for collective emission, it was shown by using a simplified Dicke-like model [21, 22] that
when the atomic transition lies close to the gap, radiation is emitted in the form of evanescent
waves and the single-excitation symmetric state has a rate proportional to N 200, which is even
larger than the one predicted by Dicke in free space.

We will show that all of this phenomenology can be observed in optical lattices with the
setup already presented in [9], which is depicted in figure 1. Consider a collection of bosonic
atoms with two relevant internal states labeled a and b (which may correspond to hyperfine
ground-state levels, see for example [1]). Atoms in state a are trapped by a deep optical lattice
in which the localized wave function of traps at different lattice sites do not overlap (preventing
hopping of atoms between sites), while atoms in state b are not affected by the lattice and hence
behave as free particles. A pair of lasers forming a Raman scheme drives the atoms from the
trapped state to the free one [1], providing an effective interaction between the two types of
particles. We consider the situation of having non-interacting bosons in the lattice [24], as well
as hard-core bosons in the collisional blockade regime, where only one or zero atoms can be
in a given lattice site [25]. In the first regime, the lattice consists of a collection of harmonic
oscillators placed at the nodes of the lattice; in the second regime, two-level systems replace the
harmonic oscillators, the two levels corresponding to the absence or presence of an atom in the
lattice site. Therefore, it is apparent that this system is equivalent to a collection of independent
emitters (harmonic oscillators or atoms) connected only through a common radiation field,
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Figure 1. Scheme of our proposed setup. Atoms in state a are trapped in an
optical lattice, while atoms in state b are free, and can thus have any momentum.
An external pair of Raman lasers connect the two levels with some detuning 1.
We will show that above some critical value1=1c, the atoms in state b are able
to leave the trap (left), whereas below this, they are trapped forming a bound state
with atoms in state a (right). This behavior is typical of band-gap systems where
the density of states is zero between the connected states.

the role of this radiation field being played by the free atoms. This system is therefore the
cold-atom analogue of the quantum-optical systems considered above, with the difference that
the radiated particles are massive and hence have a different dispersion relation than that of
photons in vacuum. Moreover, we show that the field of free atoms can be characterized by a
dispersion relation that is similar to the one obtained for photons within a photonic band-gap
material [9, 21, 22]. It is then to be expected, and so we will prove, that this system will show
the same kind of phenomenology as its quantum-optical counterparts.

Note that the hard-core boson case was already discussed in [9], and hence, apart from a
more detailed discussion of the results that can be found there, the main new results of this paper
are those concerning non-interacting bosons.

To conclude this introduction, let us explain how the paper is organized. We first introduce
the model and find its associated Hamiltonian (section 2). Then we study the radiative properties
of the system when the lattice sites emit independently (section 3); we will show in this section
that our system shows localization of the free atoms, in analogy to the localization of light
occurring in a photonic band-gap material, and we identify as well the Markovian and non-
Markovian regimes of the emission. In section 4, we study collective effects. We first deduce
a reduced master equation for the lattice atoms, explaining under what conditions it is valid.
We then show how by changing the system parameters, extended Bose–Hubbard and spin
models (section 4.1), Dicke superradiance of atomic (section 4.2.1) and harmonic oscillator
(section 4.2.2) samples, and directional superradiance (section 4.3) can be observed. We finally
talk about the effect of restricting the motion of the free atoms to two-dimensional (2D) or 1D
traps in section 5, and present some conclusions in section 6.

2. The model

Our starting point is the Hamiltonian of the system in second quantization [26]. We will denote
by |a〉 and |b〉 the trapped and free atomic states, respectively (having internal energies h̄ω0

a
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and h̄ω0
b). Two-body interactions for the trapped atoms are included with the usual contact-like

pseudopotential [3, 24], but we neglect the collisions for the free atoms. The Hamiltonian is
then written as Ĥ = Ĥ 0 + Ĥ a−b, with

Ĥ 0 =

∑
j=a,b

∫
d3r 9̂†

j (r)
(
H j + h̄ω0

j

)
9̂ j (r)+

g

2

∫
d3r 9̂

†2

a (r) 9̂
2
a (r) , (1a)

Ĥ a−b = h̄�
∫

d3r ei(kL·r−ωLt)9̂a (r) 9̂
†
b (r)+ H.c. (1b)

Ĥ 0 contains the individual dynamics of the atoms, H j being the first-quantized motion
Hamiltonian of the atom in the corresponding state, and g = 4π h̄2as/m, where as is the s-wave
scattering length of the trapped atoms (which have mass m). Ĥ a−b contains the Raman coupling
between the atomic states, kL = k1 − k2 and ωL = ω1 −ω2 (laser wave vector and frequency in
the following) being the relative wave vector and frequency of the two lasers involved in the
Raman scheme (see figure 1), with � being the corresponding two-photon Rabi frequency.

For atoms in state |a〉, Ha = −(h̄2/2m)∇2 + Vopt(r), where Vopt(r) corresponds to a 3D
optical lattice with cubic geometry and lattice period d0. We work with ultracold atoms under
conditions such that their wave functions can be described by the set of first-band Wannier
functions localized around the nodes of the lattice [1]. The traps of the optical lattice are
approximated by isotropic harmonic potentials [1], which allows us to write the Wannier
functions as

w0(r − rj)=
1

π 3/4 X 3/2
0

exp[−(r − rj)
2/2X 2

0], (2)

where rj = d0j is the position of the j ∈ Z3 lattice site (we consider M sites in each orthogonal
direction defining the cubic lattice), and X 2

0 = h̄/mω0, with ω0 being the frequency of the
harmonic trap. The energy associated with these wave functions is E0 = 3h̄ω0/2. We will
assume that Wannier functions localized at different lattice sites do not overlap, hence
preventing tunneling between sites.

On the other hand, atoms in state |b〉 can move freely in every direction of space
according to Hb = −(h̄2/2m)∇2, and hence the plane waves ψk (r)= eik·r/

√
V , with energy

Ek = h̄2k2/2m, are their motion eigenfunctions (V is the total available volume for the free
atoms, which we might take as infinite for calculations).

We consider two opposite regimes for the interaction between trapped atoms (remember
that in (1) any two-body interaction involving the free atoms has been neglected). The first
limit consists in neglecting the interactions, which might be accomplished by e.g. tuning
the scattering length with an additional magnetic field through a Feshbach resonance [24].
Expanding the quantum fields onto their corresponding motion eigenstates, we obtain within
the interaction picture

Ĥ a−b =

∑
j,k

gkei1k t−i(k−kL )·rj âjb̂
†
k + H.c., (3)

with

gk = h̄�

√
8π3/2 X 3

0

V
exp

[
−

1

2
X 2

0 (k − kL)
2

]
, 1k =

h̄k2

2m
−1, (4)
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where 1= ωL − (ωb −ωa) is the detuning of the laser frequency with respect to the |a〉
 |b〉

transition (ωa = ω0
a + 3ω0/2 and ωb = ω0

b). The operators {âj, â†
j } and {b̂k, b̂†

k} satisfy canonical
bosonic commutation relations, and create or annihilate an atom at lattice site j and a free atom
with momentum k, respectively.

As for the second limit, we assume that the on-site repulsive atom–atom interaction is
the dominant energy scale, and hence the trapped atoms behave as hard-core bosons in the
collisional blockade regime, which prevents the presence of two atoms in the same lattice
site [25]; this means that the spectrum of â†

j âj can be restricted to the first two states {|0〉j, |1〉j},

having 0 or 1 atom at site j, and then the boson operators {â†
j , âj} can be changed by spin-like

ladder operators {σ̂
†
j , σ̂ j} = {|1〉j〈0|, |0〉j〈1|}. In this second limit, the Hamiltonian reads

Ĥ a−b =

∑
j,k

gkei1k t−i(k−kL)·rj σ̂ jb̂
†
k + H.c. (5)

Hamiltonians (3) and (5) show explicitly how this system mimics the dynamics of
collections of harmonic oscillators or atoms, respectively, interacting with a common radiation
field. Note that, particularly, the dispersion relation appearing in (4) is similar to that of the
radiation field within an anisotropic 3D photonic band-gap material, where photons acquire
an effective mass close to the gap [21, 22]. We will show how by varying the parameters of
these Hamiltonians, the system has access to regimes showing many different phenomena, as
explained in the introduction.

Note, finally, that to satisfy that the trapped atoms are within the first Bloch band, it is
required that ω0 �1,�.

3. Emission of an atom from a single site

Before studying the collective behavior of the atoms in the lattice, it is convenient to understand
the different regimes of emission when the sites emit independently. To this end, we first study
the emission properties of one atom in a single site following the analysis performed in [21, 22]
for an atom embedded in a photonic band-gap material. We are going to show that there exists a
critical value of the detuning above which the atom is emitted, while below which the radiated
atom gets bound to the trapped atom, and there is a non-zero probability for the atom to remain
in the trap (see figure 1). This second regime is the analogue of the photon–atom bound state
predicted more than 25 years ago [23]. We will also identify the Markovian and non-Markovian
regimes of the emission.

Following the Weisskopf–Wigner procedure [27, 28], we write the state of an atom in a
single site (which we take as j = 0) as

|ψ (t)〉 = A (t) |1, {0}〉 +
∑

k

Bk (t) |0, 1k〉, (6)

where |1, {0}〉 refers to the state with an atom in the trap and no free atoms, and |0, 1k〉 refers
to the state with no trapped atoms and one free atom with momentum k. We can use the
Schrödinger equation to write the evolution equations of the coefficients A and Bk; then, the
equation of Bk can be formally integrated arriving at a single equation for A given by

Ȧ (t)= −

∫ t

0
dt ′ G(t − t ′)A(t ′), (7)
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where we have assumed that the atom is initially in the trap; that is, A(0)= 1 and Bk(0)= 0.
This is a non-Markovian equation where the free atoms enter the dynamics of the trapped atoms
as a reservoir with the correlation function

G (τ )=
1

h̄2

∑
k

|gk|
2 e−i1kτ =

�2

(1 + (i/2)ω0τ)
3/2 exp (i1τ), (8)

where we have taken the continuous limit for the momenta in the last equality and kL = 0 for
simplicity. Note that this correlation function coincides exactly with that of atoms in anisotropic
3D photonic band-gap materials [21, 22].

In appendix A, we show how to handle equation (7) by using Laplace transform techniques.
In particular, in appendix A.1 we show that in the strong confinement regime ω0 → ∞, this
equation can be solved as

A (t)= cei(b2+1)t +
2α
√
π

eiπ/4

∫ +∞

0
dx

√
x e(−x+i1)t

(−x + i1̃)2 + i4πα2x
, (9)

with α2
= 8�4/ω3

0, 1̃=1− 4�2/ω0 and
c = 2b+/ (b+ − b−) and b = b+ for 1̃ < 0,

c = 0, for 0< 1̃ < πα2,

c = 2b−/ (b− − b+) andb = b− for 1̃ > πα2,

(10)

where b± =
√
πα(−1 ±

√
1 − 1̃/πα2).

Solution (9) has a very suggestive form. The first term has exponential evolution as
expected for a Markovian radiation process, while the integral term has a non-trivial time
dependence that always goes to zero for sufficiently large times. The time while the integral
term is comparable to the exponential one defines the non-Markovian part of the evolution. This
result also shows that the behavior of the emission is highly dependent on the parameters of the
system:

• In the 1̃ < 0 region Im{b2
+} = 0, and hence the steady-state population is non-zero and

given by |A(t → ∞)|2 = |c|2 = (1 − 1/
√

1 + |1̃|/πα2)2; a fraction 1 − |c|2 is radiated

during the non-Markovian period that lasts longer as 1̃/α2 goes to zero (see figure 2(a)).
In this region, the radiated atoms are emitted in the form of evanescent waves, and the
equivalent of a photon–atom bound state [23] is formed.

• In the 0< 1̃ < πα2 region (figure 2(b)), the steady-state population is zero, i.e. the atom
leaves the trap eventually, and the evolution is dictated solely by the integral part of the
solution (hence it is pure non-Markovian radiation).

• Finally, in the 1̃ > πα2 region, the atom is radiated in a Markovian fashion only for

1̃� α2, with a decay rate given by 00 = Im{b2
−
} ≈ 4�2

√
2π1̃/ω3

0; if this is not the

case (1̃∼ α2), the integral part is comparable to the exponential part during most of the
evolution time, and hence the radiation process is non-Markovian (figure 2(c)).

Therefore, there exists a phase transition at 1= 4�2/ω0 in close analogy to that of
spontaneous emission in photonic band-gap materials [21, 22]. Above this value, the atom is
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Figure 2. (a)–(c) Time evolution of the population when the lattice sites emit
independently. (a) Corresponds to the trapping region, (b) to the pure non-
Markovian emission of the atoms and (c) to the radiative region having both
Markovian and non-Markovian contributions. The logarithmic scale reveals that
the Markovian regime requires |1̃| � πα2. (d) Steady-state population for finite
ω0 as a function of the detuning 1 for different values of the Rabi frequency �
(see appendix A.1). We can appreciate the phase transition from a trapped to a
radiative state for 1= 4�2/ω0.

forced to leave the trap, whereas below it there is a non-zero trapped population left in the
steady state. Using the techniques we explain in appendix A.2, it is possible to show that this
phase transition is also present for finite ω0 (see figure 2(d)).

Note that the Markovianity condition |1̃| � α2 can be recast as |1̃| � 00, which coincides
with the usual Markov limit τS � τR [29] once the characteristic evolution times of the lattice
atoms and the reservoir’s correlation function are identified with τS = 0−1

0 and τR = |1̃|
−1,

respectively.

4. Collective dynamics

Let us now study the collective emission of atoms from many sites. We analyze this through
the master equation for the reduced density operator of the lattice within the Born–Markov
approximation [29].
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We introduce the Born approximation by fixing the state of the reservoir to a non-evolving
vacuum. This leads to an effective interaction between different lattice sites mediated by the
two-point correlation function5,

Gj−l (τ )=
1

h̄2

∑
k

g2
k e−i1kτ+i(k−kL)·rj−l〈b̂kb̂†

k〉 = exp

(
−r 2

j−l/4X 2
0

1 + iω0τ/2
− ikL · rj−l

)
G (τ ), (11)

where rj−l = rj − rl = d0(j − l). The Born approximation yields the dynamics of the system to
leading order in the coupling parameters gk [29]. On the other hand, as mentioned at the end of
the previous section, the Markov approximation is valid only if |1̃| � 0, where 0 is a typical
evolution rate for trapped atoms, which can differ from 00 owing to a renormalization due to
collective effects, as we show below. We also include the single-site energy shift that we found
in the previous section (the analogue of the Lamb shift in the optical case), and substitute 1 by
1̃ in the two-point correlation function.

The master equation for the reduced density operator of the trapped atoms ρ̂ is found by
using standard techniques from the theory of open quantum systems [29], and reads

dρ̂

dt
=

∑
j,l

0j−lâlρ̂â†
j −0j−lâ

†
j âlρ̂ + H.c.; (12)

a similar equation is obtained for the hard-core bosons but replacing the boson operators by
the corresponding spin operators. The effective interaction between different lattice sites is
mediated by the Markov couplings (see appendix B)

0j−l = i exp(−ikL · rj−l)
00ξ

|j − l|

[
1 − erf

(
d0

2X0
|j − l|

)
− exp

(
−ν

|j − l|
ξ

)]
, (13)

where ξ = 1/d0k0 with k0 = X−1
0

√
2|1̃|/ω0 measures the ratio between the lattice spacing and

the characteristic wavelength of the radiated atoms, and ν = 1 (−i) for 1̃ < 0 (1̃ > 0). The error
function is defined as erf(x)= (2/

√
π)
∫ x

0 du exp(−u2). This expression has been evaluated in
the strong confinement regime ω0 → ∞ and considering kL � X−1

0 (see appendix B). Note
that the term ‘1 − erf(d0|j − l|/2X0)’ is basically zero for j 6= l, and therefore the ξ parameter
dictates the spatial range of the interactions, as can be appreciated in figure 3. Finally, we recall

that 00 = 4�2
√

2π |1̃|/ω3
0 is the single-emitter decay rate.

4.1. Extended Bose–Hubbard and spin models

For kL = 0 and 1̃ < 0, the Markov couplings are purely imaginary and have negative imaginary
parts. Under these conditions, the master equation takes a Hamiltonian form with effective
Hamiltonians

Ĥ eff = −

∑
j,l

h̄
∣∣0j−l

∣∣ â†
j âl and Ĥ eff = −

∑
j,l

h̄
∣∣0j−l

∣∣ σ̂ †
j σ̂ l, (14)

for non-interacting and hard-core bosons, respectively. The first Hamiltonian describes extended
hopping in the lattice, a feature that has been recently shown to be helpful for achieving true

5 Note that equations (11) and (13) correct some typos that can be found in equations (4) and (5) of our previous
paper [9].
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Figure 3. We plot the Markov couplings (real and imaginary parts on the left
and right, respectively) as a function of the distance between sites for 1̃ > 0. We
have chosen d0/X0 = 10 and kL = 0 and plotted four different values of ξ . It can
be appreciated that this parameter controls the spatial range of the interactions.

incompressible Mott phases that otherwise can be blurred because of the additional slowly
varying harmonic trap used to confine the atoms within the lattice [30]. The second Hamiltonian
is equivalent to an extended ferromagnetic Ising-like Hamiltonian, and it connects our system
to extended spin models. Note that for j 6= l the couplings have a Yukawa form,∣∣0j−l

∣∣≈ 00

|j − l| /ξ
exp

(
−

|j − l|
ξ

)
, (15)

and can even take a Coulomb form if ξ is large enough. These kinds of interactions (especially
the Coulomb-like) are difficult to obtain with other techniques.

These results show that in the trapping region the system under study could be useful for
quantum simulation of condensed matter phenomena requiring extended interactions.

4.2. Dicke superradiance

In this section, we connect our system to superradiant Dicke-like phenomena both in atomic and
harmonic oscillator samples (we will still take kL = 0).

For 1̃ > 0, the Markov couplings are complex in general and therefore the master equation
of the system takes the form

dρ̂

dt
=

1

ih̄
[Ĥ d, ρ̂] +D[ρ̂], (16)

with a dissipation term given by

D
[
ρ̂
]
=

∑
j,l

γj−l

(
2âlρ̂â†

j − â†
j âlρ̂− ρ̂â†

l âj

)
, (17)

having collective decay rates

γj−l = Re{0j−l} = 00 sinc

(
|j − l|
ξ

)
, (18)
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and a reversible term corresponding to inhomogeneous dephasing with Hamiltonian

Ĥ d =

∑
j,l

h̄3j−lâ
†
j âl, (19)

where

3j−l = Im{0j−l} =
00ξ

|j − l|

[
1 − erf

(
d0

2X0
|j − l|

)
− cos

(
|j − l|
ξ

)]
. (20)

The same holds for hard-core bosons but replacing the boson operators by the corresponding
spin operators.

For ξ � 1, the Markov couplings do not connect different lattice sites, that is, 0j−l ' 00δj,l,
and the sites emit independently. On the other hand, when ξ � M , the collective decay rates
become homogeneous, γj−l ' 00, and we enter the Dicke regime. Hence, we expect to observe
the superradiant phase transition in our system by varying the parameter ξ .

Note that in the Dicke regime the dephasing term cannot be neglected and connects
the sites inhomogeneously with 3j6=l ' 00ξ/|j − l|. This term appears in the optical case too,
although it was inappropriately neglected in the original work by Dicke [10] when assuming the
dipolar approximation in his initial Hamiltonian, and slightly changes his original predictions,
as pointed out in [31, 32] (see also [11]).

In the following, we analyze the superradiant behavior of our system by studying the
evolution of the total number of particles in the lattice nT =

∑
j〈â

†
j âj〉 and the rate of emitted

atoms

R (t)=

∑
k

d

dt
〈b̂†

kb̂k〉 = −
dnT

dt
; (21)

in the last equality, we have used the fact that the total number operator
∑

k b̂†
kb̂k +

∑
j â†

j âj is a
constant of motion.

4.2.1. Hard-core bosons: atomic superradiance. Let us start by analyzing the case of a lattice
in an initial Mott phase having one atom per site in the collisional blockade regime, which is the
analogue of an ensemble of excited atoms [9]. As explained in the introduction, Dicke predicted
that superradiance should appear in this system as an enhancement of the emission rate at early
times [10], although this was later proved to happen only if the effective number of interacting
emitters exceeds some threshold value [12]–[14]. This is the superradiant phase transition.

In our system, the number of interacting spins is governed by the parameter ξ (see figure 3),
and the simplest way to show that the superradiant phase transition appears by varying it is by
evaluating the initial slope of the rate, which can be written as6

d

dt
R
∣∣∣∣
t=0

= −4M302
0

1 −

∑
m6=j

sinc2(|j − m| /ξ)

M3

. (23)

6 Note that the evolution equation of the expectation value of any operator Ô can be written as

d

dt
〈Ô(t)〉 = tr

{
dρ̂

dt
Ô

}
= −

∑
m,l

{0m−l〈[Ô, â†
m]âl〉 +0∗

m−l〈â
†
l [âm, Ô]〉}, (22)

and similarly for hard-core bosons in terms of the spin ladder operators.

New Journal of Physics 13 (2011) 023024 (http://www.njp.org/)

http://www.njp.org/


12

Figure 4. Collective emission properties for an initial Mott state of hard-core
bosons. (a) Time derivative of the rate at t = 0 as a function of the range of
interactions ξ , see (23). The values M3

= 8 (solid, blue), 27 (dashed, red),
64 (dashed-dotted, green) and 125 (dotted, yellow) are considered. It can be
appreciated that there exists a critical value of ξ above which the rate is enhanced
at the initial times. (b) Rate as a function of time for M3

= 27. The values
ξ = 0.01 (solid), 0.5 (dashed), 1 (dashed-dotted) and 10 (dotted) are considered.
As expected from (a), the maximum of the rate is delayed above some critical
ξ value. Note that both the rate and its derivative have been normalized to
the values expected for independent emitters, which are 4M302

0 and 2M300,
respectively.

This expression has a very suggestive form: the term corresponding to the rate associated
with independent emitters is balanced by a collective contribution arising from the interactions
between them. In figure 4(a), we show the dependence of this derivative on ξ for various values
of the number of sites M3. It can be appreciated that there exists a critical value of ξ above
which the sign of the derivative is reversed; hence, the rate increases at the initial time and we
expect its maximum to be no longer at t = 0, which is a signature of superradiance.

The time evolution of the rate for a cubic lattice with M3
= 27 sites is shown in figure 4(b)

for different values of ξ . We can appreciate how above some critical ξ value the maximum rate
of emission is delayed as expected. To find R(t), we have simulated the evolution equations
for the coherences cjl = 〈σ̂

†
j σ̂ l〉 and the populations sj = 〈σ̂ 3

j 〉, which we close by using the
semiclassical approximation 〈σ̂ †

mσ̂
3
j σ̂ l〉 = 〈σ̂ †

mσ̂ l〉〈σ̂
3
j 〉 − 2δjl〈σ̂

†
mσ̂ l〉; they read (22)

ċjl = −400cjl +
∑

m

0l−mcjmsl +0∗

j−mcmlsj, (24a)

ṡj = −2
∑

l

0j−lcjl +0∗

j−lclj. (24b)

We have checked the validity of these semiclassical equations by comparing them with a direct
simulation of the master equation for a small number of sites in 1D and 2D geometries; except
for small quantitative deviations, they offer the same results.
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4.2.2. Non-interacting bosons: harmonic oscillators superradiance. Let us analyze now the
case of having non-interacting bosons in the lattice, which is equivalent to a collection of
harmonic oscillators, as discussed before. In previous works on superradiance, this system was
studied in parallel with its atomic counterpart [13], and here we show how our system offers a
physical realization of it. We will show that superradiant effects can be observed in the evolution
of the total number of atoms in the lattice, for both initial Mott and superfluid phases7.

The evolution of the total number of atoms in the lattice is given by (see (22))

ṅT = −2
∑

j,l

γj−lRe{〈â†
j âl〉}, (26)

and hence depends only on the real part of the Markov couplings. Therefore, we restrict our
analysis to the dissipative term D[ρ̂] of the master equation (16).

By diagonalizing the real, symmetric collective decay rates with an orthogonal matrix S
such that

∑
jlSpjγj−lSql = γ̄pδpq, one can find a set of modes {ĉp =

∑
j Spjâj} with definite decay

properties. Then, it is completely straightforward to show that the total number of atoms can be
written as a function of time as

nT (t)=

∑
p

〈ĉ†
pĉp (0)〉 exp(−2γ̄pt). (27)

In general, γj−l requires numerical diagonalization. However, in the limiting cases ξ � 1
and ξ � M , its spectrum becomes quite simple. Following the discussion after (20), in the
ξ � 1 limit, γj−l = 00δjl is already diagonal and proportional to the identity. Hence, any
orthogonal matrix S defines an equally suited set of modes all decaying with rate 00. Therefore,
if the initial number of atoms in the lattice is N , this will evolve as

nT (t)= N exp(−200t), (28)

irrespective of the particular initial state of the lattice (e.g. Mott or superfluid). The emission
rate R= 200 N exp(−200t) corresponds to the independent decay of the N atoms as expected
in this regime having no interaction between the emitters.

Let us consider now the opposite limit ξ � M ; in this case γj−l = 00 ∀ (j, l), and the
dissipative term can be written in terms of the symmetrical discrete Fourier-transform mode only
asD

[
ρ̂
]
= M300(2 f̂ 0ρ̂ f̂ †

0 − f̂ †
0 f̂ 0ρ̂− f̂ †

0 f̂ 0ρ̂) (see (25)). Hence, the discrete Fourier-transform
basis diagonalizes the problem, and shows that all of the modes have zero decay rate except the
symmetrical one, which has an enhanced rate proportional to the number of emitters. Therefore,
starting with a superfluid state, the N initial atoms will decay exponentially with initial rate
N M300, that is,

nT (t)= N exp(−2M300t). (29)

On the other hand, if the initial state corresponds to a Mott phase, most of the atoms will remain
in the lattice, as only the component that projects onto the symmetric mode will be emitted;

7 Let us note that a superfluid state with N excitations distributed over the entire lattice is more easily defined in
the discrete Fourier-transform basis,

f̂ q =
1

M3/2

∑
j

exp

(
2π i

M
q · j

)
âj, (25)

with q = (qx , qy, qz) and qx,y,z = 0, 1, 2, . . . ,M − 1, as the state having N excitations in the zero-momentum
mode; that is, |SF〉N = (N !)−1/2 f̂ †N

0 |0〉.
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Figure 5. Evolution of the total number of atoms in a lattice having M3
= 27

sites for initial superfluid (a) and Mott (b) phases with N initial non-interacting
atoms. The solid curves correspond to the limits ξ � 1 (gray) and ξ � M (dark
blue). Note how the ‘evaporation time’ is reduced for the initial superfluid state
as ξ increases (a). Equivalently, note how for an initial Mott state the atoms tend
to stay in the lattice as ξ increases (b).

concretely, from (27) and (25) the number of atoms in the lattice will evolve for this particular
initial state as

nT (t)=

(
N −

N

M3

)
+

N

M3
exp

(
−2M300t

)
. (30)

Hence, according to this picture, superradiant collective effects can be observed in our
system by two different means. Calling t0 the time needed to radiate the atoms in the absence
of collective effects, one could start with a superfluid phase and measure this ‘evaporation time’
as a function of ξ ; this should go from t0 for ξ � 1, to a much shorter time t0/M3 for ξ � M
(see figure 5(a)). Alternatively, one could start with a Mott phase, and measure the number of
atoms left in the lattice in the steady state as a function of ξ ; in this case, it should go from
nT,steady = 0 after a time t0 for ξ � 1, to nT,steady = N − N/M3 after a time t0/M3 for ξ � M
(see figure 5(b)).

To find the evolution of nT, we have simulated the equations satisfied by the coherences
cjl = 〈â†

j âl〉, which read (see (22))

ċjl = −

∑
m

[
0l−mcjm +0∗

j−mcml
]
. (31)

Note that in this case the equations are closed without the need for a semiclassical
approximation, and hence they are exact. Note that they reproduce the analytic evolution of
nT as given by (28), (30) and (29) in the corresponding limits (see figure 5).

Our results are connected directly to those found by Agarwal some decades ago [13].
Working with a Dicke-like model, he showed that if all of the oscillators start in the same
coherent state |α〉, the initial number of excitations, which in that case is given by N = M3

|α|
2,

decays following (29). This is not a coincidence, but rather a consequence that, if N is large
enough, a multi-coherent state of that kind is a good approximation of a superfluid state with

New Journal of Physics 13 (2011) 023024 (http://www.njp.org/)

http://www.njp.org/


15

that number of excitations. He also predicted that if the oscillators start in a number state, most
of the excitations would remain in the steady state as follows from (30).

4.3. Directional superradiance

The last phenomenon connected to quantum optics that we want to discuss is how allowing
kL 6= 0 the direction of emission of atoms can be controlled.

This follows from the fact that by tuning the laser wave vector such that kL = k0 while
working in the 1̃ > 0 regime, the master equation of our system (12) has exactly the same
form as that of [18] (see also [17]), where the properties of light emitted by regular arrays of
atoms were analyzed in terms of the rate and direction of emission. Hence, we could expect the
same phenomena to appear in our system, with the difference being that in our case the emitted
particles are atoms and not photons. Let us explain the results found in [18] and translate them
to our system.

We are particularly interested in the analysis performed in [18] of the emission properties
of an initial symmetric Dicke state (a symmetrical spin wave in its notation). It was
shown that the average number of photons emitted in the direction of the vector u� =

(sin θ cosφ, sin θ sinφ, cos θ), with θ and φ being the polar and azimuthal spherical angles,
respectively, can be written as

I (�)=
1

4πM3

00

0

∑
j,l

exp
[
i (kLu� − kL) · rj−l

]
, (32)

where the total emission rate 0 is found from the normalization condition
∫

d�I (�)= 1 (� is
the solid angle).

This expression was deduced in [18] in the M � 1 limit by diagonalizing the master
equation with the use of periodic boundary conditions. The limit 0 � c/L was considered (c is
the speed of light and L = Md0 is the length of the lattice in a given direction); that is, it was
assumed that the emission time is larger than the time taken by a photon to leave the sample.
Following the same steps, but taking into account the different dispersion relation of the emitted
particles in our system, the same expression (32) can be proved but now under the condition
0 � v0/L , where v0 = h̄k0/m is the characteristic speed of the emitted atoms. We will explain
later what this condition means in terms of the system parameters.

In the optical case treated in [18], the angular distribution (32) applies strictly only to
the single excitation sector. In our case, this result is especially relevant for the case of non-
interacting atoms trapped in the optical lattice in an initial superfluid state: since a superfluid
state can be described as a state of N atoms in the completely symmetric state (see (25)), the
results of [18] imply here that those N trapped atoms will emit N free atoms with an angular
distribution given by (32).

The sums in (32) can be performed analytically, leading to the result

I (�)=
1

4πM3

00

0

∏
α=x,y,z

sin2[(u� − k̂L)αM/2ξ ]

sin2[(u� − k̂L)α/2ξ ]
, (33)

where we have denoted by k̂L = kL/kL the unit vector in the ‘laser’ direction. This function
has a diffraction maximum whenever the denominator vanishes; that is, for vectors m ∈ Z3

such that u� = k̂L + 2πξm. To analyze directionality, it is better to rewrite this condition as
πξ |m| = |k̂L · m̂|, where m̂ = m/|m|. Then we see that for πξ > 1, only m = 0 can satisfy this
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condition, and hence the atoms are mostly emitted in the laser direction. This is the directional
regime.

The emission rate 0 and the angular width of the atomic beam 1θ must be evaluated
numerically in general. However, approximating the diffraction peaks by Gaussian functions, a
limit that is justified if the peaks are narrow enough (ξ/M � 1), we can obtain the following
expression for them [18],

0 = χ00 with χ = π 3/2 Mξ 2 and1θ = ξ/M. (34)

Hence, we see that in addition to directionality, the rate is enhanced by a factor χ .
Let us finally explain what the initial approximation 0 � v0/L means in terms of the

system parameters. Using (34), this can be written as

�2

ω2
0

�
X0/d0

M2π2ξ 2
, (35)

which can be always satisfied by a proper tuning of the two-photon Rabi frequency.
This analysis shows that our scheme can be used to observe directional, superradiant

emission by starting with a superfluid phase and tuning the laser wave vector so that kL = k0.

5. Considerations about dimensionality

So far we have allowed atoms in state |b〉 to move freely in 3D. However, the free motion of these
atoms can be restricted to 2D or 1D by coupling them to an additional 1D or 2D deep optical
lattice, respectively. Under these conditions, the momentum of the free atoms has components
only along the non-trapped directions, say k2D = kx x̂ + ky ŷ and k1D = kx x̂; from the point of
view of the atoms in state |a〉, the dimensionality of the reservoir they are interacting through is
therefore reduced to 2D or 1D. Hence, only sites lying in the same z = const plane (for the 2D
reservoir) or (y, z)= const tube (for the 1D reservoir) would be connected through a two-point
correlation function given by (11), but replacing G(τ ) by the correlation functions

G2D (τ )=
�2

1 + (i/2)ω0τ
exp(i1τ) and G1D(τ )=

�2

[1 + (i/2)ω0τ ]1/2
exp(i1τ). (36)

G1D coincides with the correlation function of atoms embedded in isotropic band-gap
materials [21, 22], while G2D has no quantum-optical analogue to our knowledge.

Hence, with an additional trapping of the free atoms, our scheme could be useful to study
low-dimensional reservoirs described by these correlation functions.

6. Conclusions

To conclude, let us briefly summarize what we have shown in this paper.
We have studied a model consisting of atoms trapped in an optical lattice (with trapping

frequency ω0, lattice period d0 and cubic geometry with M3 sites), which are coherently driven
to a non-trapped state through a Raman scheme having detuning 1 with respect to the atomic
transition, relative wave vector between the Raman lasers kL, and two-photon Rabi frequency
�. The limits of non-interacting bosons and hard-core bosons—where either one or zero atoms
can be in a given lattice site—have been considered for the trapped atoms, while interactions
involving the free atoms have been neglected.
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These are the main results that we have found (numbering follows the sections of the
paper):

(2) We have first deduced the Hamiltonian of the system, showing that it is equivalent to that
of a collection of harmonic oscillators or two-level systems for non-interacting atoms and
hard-core bosons, respectively, interacting with a common radiation field consisting of
massive particles.

(3) We have then studied the emission of free atoms when the lattice sites emit independently.
We have found a phase transition at 1̃=1− 4�2/ω0 = 0 from a regime (1̃ < 0) where the
trapped and free atoms form a bound state and there is a non-zero steady-state population
left in the lattice, to a radiative regime (1̃ > 0) in which all the atoms leave the lattice
eventually. We have identified the Markovian and non-Markovian regimes of the emission,
showing that the condition for Markovianity is |1̃| � 8π�4/ω3

0.
This behavior is analogous to the one predicted in [21, 22] for the spontaneous emission

of atoms embedded in photonic band-gap materials.

(4) As for collective effects, we have studied them by using a reduced master equation for the
lattice within the Born–Markov approximation, explaining under what conditions this may
hold in our system. This master equation has shown that the number of interacting sites is

controlled by a single parameter, namely ξ = 1/d0k0 with k0 = X−1
0

√
2|1̃|/ω0.

Now let us summarize the main collective effects that we have predicted to appear.

(4.1) For 1̃ < 0 and kL = 0, the evolution of the lattice follows an effective Hamiltonian:
extended hopping for non-interacting atoms and extended ferromagnetic interactions
for hard-core bosons. The coupling between lattice sites has a Yukawa form, but
approaches a Coulomb form as ξ increases.

This could be helpful for the simulation of condensed-matter phenomena requiring
extended interactions.

(4.2) For 1̃ > 0 and kL = 0, the master equation has a collective dissipation term in addition
to the Hamiltonian part. In the ξ � 1 limit, this dissipation term corresponds to the
lattice sites emitting independently with the same rate, whereas in the ξ � M limit
it takes a Dicke-like form and therefore superradiant effects are expected to appear.
Hence, we have argued that the superradiant phase transition could be observed in our
system by varying the ξ parameter.

Indeed, we have shown that both atomic and harmonic oscillator superradiance can
be observed:

(4.2.1) When starting with a Mott phase having one atom per site in the collisional
blockade regime (which is the equivalent of a collection of excited atoms), there
exists a critical value of ξ above which the emission rate is enhanced at the initial
stage of the emission, and its maximum occurs for t 6= 0.

This delay of the maximum rate was suggested by Dicke in his seminal
work [10], and was shown to be a signature of the superradiant phase transition
for atomic samples [12]–[14].

(4.2.2) If the lattice atoms are non-interacting, there are two equivalent ways of observing
superradiant behavior. One can start with a superfluid phase, and measure the time
needed to radiate the lattice atoms, which should be reduced by a factor M3 when
going from the ξ � 1 to the ξ � M limit. Alternatively, one can start with a Mott
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phase having N atoms in the lattice, and measure the number of trapped atoms
left in the steady state; this should go from zero in the ξ � 1 limit, to N − N/M3

in the ξ � M limit.
This behavior is consistent with the results found in [13] for the spontaneous

emission of a collection of harmonic oscillators, and hence our scheme provides
a physical realization of this system.

(4.3) The last phenomenon linked to quantum optics that we have shown is that
superradiant, directional emission can be obtained in our system. In particular, we
have proved that by starting from a superfluid phase distributed over enough lattice
sites (M � 1), matching kL to k0, and working in the πξ > 1 regime, the atoms are
emitted mostly within the kL direction. If the condition ξ/M � 1 is also satisfied, the
beam has been shown to have angular width 1θ = ξ/M and a rate enhanced by a
factor χ = π 3/2 Mξ 2.

These results are in agreement with those of [17, 18], where the emission of
photons by regular arrays of atoms was studied.

(5) We have finally discussed what would change if the motion of the free atoms is restricted to
2D or 1D by using an additional optical lattice. We have shown that in these conditions the
correlation function of the reservoir through which the lattice sites are interacting takes the
form G(τ )∝ (1 + iω0τ/2)d/2, where d is the dimensionality (d = 1 and 2 for 1D and 2D,
respectively). For 1D, this corresponds to the correlation function of the radiation field in
an isotropic photonic band-gap material [21, 22], whereas for 2D it has no quantum-optical
counterpart.

All of the proposed scenarios can be reached with currently available technology, and
hence we believe that this work provides a solid base for considering optical lattices as quantum
simulators of quantum-optical systems.
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Appendix A. Extracting information from the non-Markovian equation (7)

In this appendix, we explain how to manipulate (7) by using Laplace transform techniques to
understand the emission properties of the system in the limit of independent lattice sites.
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Making the Laplace transform of (7), the solution for the amplitude A in Laplace space is
found to be8

Ã (s)=
1

s + G̃ (s)
. (A.3)

On the other hand, the Laplace transform of the correlation function (8) is

G̃ (s)=
4�2

ω0

{
−i + e−2(1+is)/ω0

√
2π (1+ is)

ω0

[
1 + erf

(
i

√
2 (1+ is)

ω0

)]}
, (A.4)

or to first order in (1+ is)/ω0

G̃∞ (s)= −
4i�2

ω0
+α (1 + i)

√
2π (s − i1). (A.5)

Note that as we assume that s/ω0 � 1, this transform cannot describe properly times below
ω−1

0 , and this is why sometimes this limit receives the name ‘strong confinement’, as it needs
ω0 → ∞ or otherwise the initial steps of the evolution are lost in the description. Unlike in
the general case where the transform of the correlation function has a really complicated form
(A.2), in this limit it is possible to make the inverse Laplace transform of Ã (s). Hence, in the
following we consider the two cases separately, as the first case requires special attention in
order to extract results.

A.1. Evolution of the population in the strong confinement limit

The Laplace transform of A can be inverted as [33]

e−i1t A (t)=
1

2π i

∫ ε+i∞

ε−i∞
ds est Ã (s + i1)=

1

2π i

∫ ε+i∞

ε−i∞
ds

est

s + i1̃+α (1 + i)
√

2πs
, (A.6)

where we have used the ‘strong confinement’ form of the correlation transform (A.3), and ε > 0
must be chosen so that all the poles of Ã (s + i1) stay to the left of the Re{s} = ε line. The
multivaluated character of

√
s forces us to define a branch cut in the complex-s space; we chose

to remove the branch arg{s} = π , hence defining the phase of s in the domain [−π, π]. Then,
choosing the integration contour as that in figure A.1, we can write the needed integral as∫ ε+i∞

ε−i∞
dsK (s)= 2π i

∑
j

R j − lim
r→0

R→∞

[∫
Ru

dsK (s)+
∫
Rd

dsK (s)

]
, (A.7)

with R j being the residues of the kernel K (s)= Ã (s + i1) exp(st) at its poles [33]. The
integrals over the paths Cu , Cd and Cc are zero when r → 0 and R → ∞.

8 We define the Laplace transform of a function f (t) as [33]

f̃ (s)= Ls [ f (t)] =

∫ +∞

0
dt e−st f (t), (A.1)

which satisfies the properties [33]

Ls[ ḟ (t)] = s f̃ (s)− f (0) and Ls

[∫ t

0
dt ′ g

(
t − t ′

)
f
(
t ′
)]

= g̃ (s) f̃ (s). (A.2)
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Figure A.1. Integration circuit in the complex-s plane for the evaluation of the
inverse Laplace transform.

Making the variable change s = eiπ x and s = e−iπ x in the integrals along Ru and Rd ,
respectively, we obtain

lim
r→0

R→∞

[∫
Ru

dsK (s)+
∫
Rd

dsK (s)

]
= 4

√
παe−iπ/4

∫ +∞

0
dx

√
xe−xt

(−x + i1̃)2 + i4πα2x
, (A.8)

which is not analytical, but can be performed numerically very efficiently.
On the other hand, the poles of K (s) are easily evaluated by making the change s = ix2,

hence turning its denominator into x2 + 2
√
παx + 1̃ whose roots are

x± = −
√
πα±

√
πα2 − 1̃= |x±| eiϕ±; (A.9)

therefore, the poles are simple and read s± = ix2
±

. To evaluate the residues, it is convenient to
write the Kernel of (A.6) as

K (s)=

∏
j=±

√
s + eiπ/4x j

s − eiπ/2x2
j

est , (A.10)

from which the residues are easily found as

R+ =

√
s+ + eiπ/4x+

√
s+ − eiπ/4x−

es+t and R− =

√
s− + eiπ/4x−

√
s− − eiπ/4x+

es−t . (A.11)

The problem now is that the phase of s± must be defined in the interval [−π, π] (remember
the branch cut in figure A.1), and hence we have to analyze their phases as a function of the
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phases of x±, which we take in the interval [0, 2π ] as a convention. In terms of the parameters
1̃ and α, we can define three regions:

• In the region 1̃ < 0 we have ϕ+ = 0 and ϕ− = π . Hence, we have to write

s+ = eiπ/2
|x+|

2 and s− = eiπ/2
|x−|

2 e2iπ
× e−2iπ

; (A.12)

that is, we have to decrease the phase of s− by 2π to keep it within the interval [−π, π];
with s± written in this way, the residues read

R+ =
2 |x+|

|x+| + |x−|
eix2

+t and R− = 0. (A.13)

• In the region 0< 1̃ < πα2, we have ϕ± = π , and hence, we have to decrease the phase of
both s± by 2π to keep them within the interval [−π, π]; therefore both residues are zero,
R± = 0.

• In the region 1̃ > πα2, we have ϕ+ ∈ [π/2, π] and ϕ− = [π, 3π/2]. Hence, we need to
write

s± = eiπ/2
|x±|

2 e2iϕ± × e−2iπ and s− = eiπ/2
|x−|

2 e2iϕ− × e−4iπ
; (A.14)

that is, we decrease the phase of s+ by 2π and the phase of s− by 4π so that they both stay
in the interval [−π, π], and then obtain

R+ = 0 and R− =
2x−

x−x+
eix2

−t . (A.15)

Introducing these results for the residues and the integral (A.8) in (A.7), we arrive at the
expression that we wanted to prove for the population A(t) (see (9)).

A.2. Steady-state population in the general case

From the last discussion, it should be clear that the long-term population is dictated solely by
the residues of K (s)= Ã (s + i1) exp(st). Moreover, only the residues corresponding to pure
imaginary poles will remain in the t → ∞ limit, and hence the steady-state population will be
given by

|A (t → ∞)|2 =

∣∣∣∣∣∣
∑

s j/Re{s j}=0

R j

∣∣∣∣∣∣
2

. (A.16)

Then, to know the steady-state population in the finite trap case, we just need to find the
pure imaginary poles of K (s) with the transform of the correlation function given by (A.2). By
writing s = ix with x ∈ R, this amounts to solving the equation

x + 1̃+ 4�2 exp

(
2x

ω0

)√
2πx

ω3
0

[
1 − erf

(√
2x

ω0

)]
= 0. (A.17)

This equation cannot be solved analytically, but it can be efficiently solved numerically.
On the other hand, once we know the solutions x j of this equation, we can use them to evaluate
their associated residues as [33]

R j =

{
eix j t

d

ds
[s + i1+ G̃ (s + i1)]s=ix j

}−1

. (A.18)

This is the method that we have used to compute the results shown in figure 2(d).
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Appendix B. Evaluation of the Markov couplings (13)

In this appendix, we show that in the strong confinement regime, the Markov couplings have the
form (13). After the Born–Markov approximation is carried out, the effective coupling between
different sites has the form9

0j−l =

∫
∞

0
dτ Gj−l (τ )= lim

ε→0+

∑
k

g2
k

h̄2

exp
[
i (k − kL) · rj−l

]
ε + i1k

. (B.1)

In the limit kL � X−1
0 (in which we can remove kL from gk; see (4)), taking the continuous limit

for the momentum, and performing the angular part of the integral over momenta by assuming
that rj−l is within the z-axis, this expression can be reduced to

0j−l =
8X0�

2

iπ 1/2ω0
e−ikL·rj−l

[∫
∞

0
dk sinc(krj−l) exp(−X 2

0k2)

− lim
ε→0+

(1̃+ iε)
∫

∞

0
dk

sinc(krj−l) exp(−X 2
0k2)

1̃+ iε− (h̄k2/2m)

]
. (B.2)

The first integral is easily evaluated as∫
∞

0
dk sinc(krj−l) exp

(
−X 2

0k2
)
=

π

2rj−l
erf

(
rj−l

2X0

)
. (B.3)

The second integral is not analytical in general. Nevertheless, in the strong confinement regime,
both |1̃|/ω0 and X0/d0 are small, and hence the Gaussian function in the Kernel can be
approximated by one, so that the remaining integral reads∫

∞

0
dk

sinc(krj−l)

1̃+ iε−
h̄k2

2m

=
π

2rj−l(1̃+ iε)

1 − exp

i
rj−l

X0

√
2(1̃+ iε)

ω0

 . (B.4)

Introducing these integrals in (B.2) and taking the ε→ 0 limit, we arrive at expression (13) for
the Markov couplings.
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